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ABSTRACT

Interannual rainfall variability has important effects for the evolution of biotic and human communities.
Historical records of monthly rainfall totals for 1492 stations within 308 of the equator were analyzed using the
method of L-moments. The 0.1 quantile (QU10), or the proportion of mean annual rainfall expected in the driest
year in 10, was selected as the measure of variability. A nonlinear regression was fit to the relationship between
QU10 and mean annual rainfall, and regions were categorized into three classes on the basis of the residuals:
the 25% with the most negative, the 25% with the most positive, and the middle 50%. Maps of the global and
regional patterns of rainfall variability show marked geographical patterning of variability and identify areas
where rainfall variability may be a particularly important environmental feature.

1. Introduction

Mean annual rainfall has long been known as an im-
portant determinant of biological productivity and has
been incorporated, in one fashion or another, into almost
all classifications of world climate. Modern ecological
theory suggests, however, that climatic variability, in-
cluding rainfall variability, should play a major role in
the evolution of life histories of plants and animals (e.g.,
Schaffer 1974; Stearns 1976; Tuljapurkar 1989). Life
histories of species in regions of greater variability can
be expected to differ from those in regions of similar
annual rainfall, but lower variability. In a pioneering
study, Conrad (1941) demonstrated that interannual var-
iability increases as mean annual rainfall declines. In
addition, he showed that regions of equivalent mean
rainfall may differ significantly in year-to-year variation
in total rainfall, and provided a global map of variation
in variability. Nicholls (1988) showed, using Conrad’s
data, that rainfall stations in regions affected by South-
ern Oscillation events had higher rainfall variability than
other stations. Nicholls and Wong (1990) extended these
results, using a different and larger dataset, and showed
that variability of annual rainfall increases as 1) mean
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annual rainfall decreases, 2) as latitude decreases, and
3) in tropical and near-tropical regions, as the influence
of the Southern Oscillation increases. The present paper
seeks to establish more precise mapping of interannual
rainfall variation using a larger dataset and a recently
developed method for the analysis of regional frequency
data (Hosking and Wallis 1997) for those areas within
308 of the equator. The pattern of relative variability
offers scientists the opportunity to identify regions
where interannual rainfall variability may have been im-
portant in the evolution of natural and human com-
munities.

The examination of interannual rainfall variation is
fraught with difficulties, both in terms of data and of
statistical analysis. In terms of data, two problems are
paramount: historical records are available for a very
uneven distribution of stations, and even the most care-
fully compiled datasets suffer from problems of missing
data, transcription errors, and unidentified changes in
station location and recording method over time. From
a statistical point of view, the primary problem is that
the distribution of rainfall totals for any given station
is very unlikely to be normally distributed. The stations
used here varied extensively in the skewness and kur-
tosis of their recorded distributions. In such a context,
comparisons based upon a simple measure of spread
like the standard deviation are problematic, particularly
because the probability of rainfall deficit years is likely
to be more important biologically than that of rainfall
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FIG. 1. Precipitation stations retained in the regional analysis.

surpluses. This follows from Liebig’s ‘‘law of the min-
imum’’ (1964); biological systems are limited by which-
ever essential input is in shortest supply, and increases
in the availability of nonlimiting factors have little effect
on productivity. Even more difficulties arise from ex-
trapolating climatic variability to places where stations
are not located. In this analysis, an attempt has been
made to limit the impact of each of these problems and
to provide a relatively robust description of interannual
rainfall variation in the tropical regions.

2. Data and methods

The data used here are derived from the Global His-
torical Climatology Network (GHCN) datasets (Vose et
al. 1992) of monthly precipitation totals and station
characteristics. Prior to their release, these data were
subjected to a quality control process that included plot-
ting each series to identify gross errors. Nonetheless,
the records vary considerably in completeness and rec-
ord length, and it was necessary to employ some ar-
bitrary initial rules to screen the data, of which a subset
was selected for subsequent analysis. First, for prag-
matic reasons, and in order to ease interpretation, only
stations located between 308N and 308S latitude were
retained. Second, because substantial numbers of miss-
ing data compromise analyses of variation, only stations
with less than 5% missing data were retained. Third, in
order to limit the impact of long-term secular change,
and other deviations from stationarity, only data from
January 1940 and after were employed. Finally, only
stations that had 20 complete annual records after 1940

were retained. The subset thus selected numbered 1527
stations (Fig. 1), and record lengths ranged from 20 to
49 yr, with a median of 37. It is immediately apparent
that there is a far from uniform coverage of the Tropics,
and some regions, most particularly South America,
have very poor coverage.

One major problem in the analysis of annual rainfall
totals can arise from the arbitrary division of years be-
tween December and January. This is particularly prob-
lematic for stations whose season of highest rainfall
occurs in these months, because unusually wet or dry
rainy seasons are divided between two years. In order
to avoid this problem, mean monthly rainfall was cal-
culated for all stations, and the month with the lowest
mean rainfall was selected as the beginning of each
station’s year. Thus, annual totals are calculated as the
sum of the 12 months following the driest month at each
station. The GHCN monthly totals are presented in units
of tenths of millimeters; when a monthly total was re-
ported as ‘‘trace,’’ it was arbitrarily set to 0.1 mm.

For each station, data on latitude, longitude, and el-
evation were collected from the GHCN dataset; when
elevations were missing, they were estimated from the
ETOPO-5 elevation dataset (NOAA 1988). In addition,
the following characteristics were calculated for each
station, using the complete post-1940 records: the be-
ginning month of the 2-month period with the lowest
mean rainfall, the mean amount of rain that fell during
that period, the beginning month of the 2-month period
with the highest mean rainfall, the amount of rain that
fell in that period, and the ratio of the minimum average
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TABLE 1. Transformations and weighting of site characteristics used in the initial clustering.

Site characteristics Transformation Weighting

Lat Mean 5 0, std dev 5 1 5
Long Mean 5 0, std dev 5 1 5
Elev Log10, and then mean 5 0, std dev 5 1 2
Mean annual rainfall Sq. root, and then mean 5 0, std dev 5 1 2
Ratio of min average 2-month precipitation

to max 2-month precipitation
Sq. root, and then mean 5 0, std dev 5 1 2

Beginning month of min average 2-month
precipitation

cos(2p month/12) and sin(2p month/12),
and then each transformed to mean 5 0,
std dev 5 1

1 each

Beginning month of max average 2-month
precipitation

cos(2p month/12) and sin(2p month/12),
and then each transformed to mean 5 0,
std dev 5 1

1 each

2-month precipitation to the maximum average 2-month
precipitation.

The analytic methods follow the model established
by Guttman (1993), with some modifications described
below. The method proceeds by establishing regions
through a cluster analysis of station characteristics other
than those directly related to variability, and then testing
the regions thus formed with measures of discordancy
and heterogeneity based upon the frequency distribu-
tions of the clustered stations. When regions are het-
erogeneous, additional cluster analysis is employed to
divide the stations into more homogenous regions. Dis-
crepant stations are examined to see if they can be
moved to adjacent clusters, if new clusters can be cre-
ated that make climatological sense, of if there are clear
errors in the data.

The analysis began by the creation of provisional cli-
matic regions by a cluster analysis of site characteristics
other than variability, using the cluster analysis pro-
grams supplied by Hosking (1997). Seven variables
were selected as descriptors of precipitation region. His-
tograms of three variables suggested that reshaping
would be helpful; thus mean annual precipitation and
the ratio of minimum average 2-month precipitation to
maximum 2-month precipitation were transformed by
taking square roots, and elevation was transformed by
log10, with an elevation of 1 m substituted for the four
stations at sea level, and the single station with a neg-
ative elevation (Biwa, Egypt, at 215 m). As suggested
by Hosking and Wallis (1997), the months identifying
the minimum and maximum 2-month periods of pre-
cipitation were replaced by two transformed variables
[sin(2p month/12) and cos(2p month/12)]. All of the
variables, or their transformations, were standardized to
a mean of zero, with a standard deviation of 1. Finally,
the variables were multiplicatively weighted, such that
half of the overall weight of the variability was due to
latitude and longitude, and half was associated with the
other five variables. This weighting of locational vari-
ables proved necessary to produce clusters of sites that
were contiguous in two-dimensional space. Table 1
gives a description of the variables and the transfor-
mations employed. The cluster analysis employed Eu-

clidean distances and used an average-linkage algo-
rithm, followed by adjustment with k-means clustering.
This follows the recommendations of Hosking and Wal-
lis (1997, 59–59) for the formation of clusters for fre-
quency analysis, and we employed the algorithms dis-
tributed by Hosking (1997). After some experimenta-
tion, a clustering of 50 clusters was selected as a starting
point for subsequent analysis. These were inspected for
geographical and climatological interpretability, and
many were divided.

The moments of the frequency distribution of annual
precipitation were estimated for every station using the
method of L-moments (Hosking 1990; Hosking and
Wallis 1997). The first sample moment (l1) is equal to
the mean annual rainfall. The second sample moment
(l2) is a measure of dispersion (½ of Gini’s mean dif-
ference) analogous to standard deviation. A dimension-
less measure of variability, L-CV, is defined as (l2/l1)
and is analogous to the more familiar coefficient of var-
iation. L-skewness and L-kurtosis are equally dimen-
sionless and defined as (l3/l2) and (l4/l2), respectively.

The clusters created were examined for station dis-
cordancy, using the measure Di, and for heterogeneity,
using the measure H (Hosking and Wallis 1997, p. 63),
as well as subjectively, for geographical and climato-
logical plausibility. The data for discordant stations were
examined by plotting time series, and inspecting the data
directly. In several cases, stations were dropped from
the analysis when the records seemed highly implau-
sible, or when there was a clear indication of error. The
most common problems were the result of apparently
misplaced decimal points—when a station’s average an-
nual precipitation suddenly and permanently increased
or decreased by an order of magnitude—or the substi-
tution of zeros for missing records. While this latter
problem is not easily detectable in arid sites, in moister
regions several suspect cases were identified. In such
station’s records there is a change from a pattern of
frequent missing monthly records, to a pattern of no
missing data, but several zero monthly rainfall totals in
improbable seasons, or in several consecutive months.
These were compared to contemporary records at nearby
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TABLE 2. Acceptable fits of distributions to homogeneous regions
of two or more stations.

Distribution
No. of regions

acceptably fitted

Generalized logistic
Generalized extreme value
Generalized normal
Pearson type III
Generalized Pareto

87
164
169
169

19

TABLE 3. Distribution of the number of regions by size.

Region size No. of regions
Cumulative no. of

stations

1
2
3
4
5

49
36
34
23
17

49
121
223
315
400

6
7
8
9

10

16
17
18

8
3

496
615
759
831
861

11
12
13
14
15

6
6
4
4
1

927
999

1051
1107
1122

16
17
18
19
21

3
3
1
1
1

1170
1221
1239
1258
1279

25
29
31
38
40

3
1
1
1
1

1354
1383
1414
1452
1492

stations, and if no further evidence of dramatic climatic
disturbance could be found, the station was dropped.

Clusters were adjusted by moving sites from one re-
gion to another, by subdivision, by assigning all of the
sites of a region to neighboring clusters, by merging
clusters, or by additional cluster analysis of selected
regions. When additional cluster analyses were em-
ployed, the variables used were always a subset of the
variables listed in Table 1. In these regional cluster anal-
yses, the variables were restandardized to a mean of 0
and a standard deviation of 1, and careful attention was
paid to the topography and climatic regime. For ex-
ample, an early, but heterogeneous, cluster included
lowland sites from the southernmost Malay Peninsula
and northern Sumatra. In this area, latitude, longitude,
elevation, and mean annual rainfall contributed little
variance; the clusters primarily divide on the variables
relecting rainfall seasonality, and the final clusters seem
to represent the difference between those stations most
strongly influenced by the Indian Ocean circulation, and
those that faced the East China Sea. At each point, the
goal was to find physically plausible regions that were
reasonably homogeneous in terms of their frequency
distributions. This process continued through several it-
erations until no further progress seemed likely.

For each region, a goodness of fit statistic ZDIST was
calculated for six distributions: generalized logistic,
generalized extreme value, lognormal, Pearson type III,
generalized Pareto, and Wakeby (Hosking and Wallis
1997). As Table 2 indicates, three distributions per-
formed essentially identically and any of these could
have been used. Following Guttman et al. (1993), where
a Pearson type III distribution gave an acceptable fit,
the quantiles of precipitation were estimated from that
distribution. In other cases, the quantiles were calculated
from the fitted Wakeby distribution. With five param-
eters, a Wakeby distribution can represent essentially
any distribution. For the two heterogeneous regions, a
Wakeby distribution was similarly fitted. In the case of
seven regions, the proportions of years of zero precip-
itation were sufficiently large that negative quantiles
resulted. For these regions, a Wakeby distribution with
the lower bound constrained to zero for all quantiles
less than the proportion of zeros in the regional dataset
was fitted (Hosking and Wallis 1997, 176–177).

The quantile 0.10 was selected as a measure of re-
gional variability of interest to ecological studies. It rep-

resents the proportion of mean annual rainfall of the
driest 10% of years. The selection is arbitrary, but the
mapping of variability is very similar if the 0.05 or 0.20
quantiles are used. Variability is highly dependent upon
the mean, with arid regions much more variable than
wetter regions. This effect was removed by means of a
nonlinear regression of the 0.1 quantile against mean
rainfall. The equation fitted was QU10 5 a 1 b/(c 1
mean rainfall), where a, b, and c are parameters to be
determined. The three parameter fitted equation follows
Conrad (1941) and Nichols (1988). The fitting was ac-
complished with a modified Gauss–Newton algorithm
minimizing least squares (Engelman and Wilkinson
1996). Because regions composed of only one or two
stations were often outliers, the regression equation was
calculated only for regions with at least three stations.
The residuals of this regression, which reflect greater or
lesser variability of a region in comparison to regions
of roughly similar rainfall, were then mapped. The re-
sulting map offers a clear guide to patterns of rainfall
variability in the Tropics.

3. Results

The initial sample of 1527 stations was eventually
reduced to 1492, divided among 256 clusters. The clus-
ters varied in size from 1 to 40 stations (see Table 3).
Although the reliability of the quantiles fitted to each
region increases with the number of stations included,
the extremely uneven distribution of stations meant that
many stations were geographically isolated, and because
of differences of distance, elevation, and relief likely to
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FIG. 2. Heterogeneity of final regions, in comparison to the mean
annual rainfall of the regions, weighted by the number of years of
record for each station.

FIG. 3. Nonlinear regression of QU10 against weighted mean annual
rainfall. The line was fitted only to regions with three or more stations
(filled circles), but regions of one or two stations are also located on
this graph (open circles).

be climatically divergent from any of the neighboring,
but distant, regions. Additional complications arose in
areas of extremely high relief, where a high-altitude
station may be very different from nearby lower-ele-
vation stations, and on oceanic islands, where a wind-
ward station might have very different patterns of rain-
fall from neighboring leeward stations. In each of these
kinds of cases, genuine climatic differences isolated the
stations from neighboring regions. In all cases, stations
placed in a cluster of their own for reasons of distant
location or divergent climatic character as reflected in
the variables of Table 1. Sites were not isolated solely
because of differences in rainfall variability.

Of the 209 regions with two or more stations, only
two remained definitely heterogeneous (H . 2.0). Both
of these regions were extremely arid (see Fig. 2), with
stations characterized by very high L-CV values. The
first was a region of six stations, located along the north-
ern and central coast of Peru. The weighted mean annual
rainfall total for this region was 2 cm of rain per year.
The other was a region of three stations in the lowland
interior of Baja California, with a weighted mean annual
rainfall of 13 cm. In the Peruvian records, many years
saw no rain at all, and in Baja California, rainfall is
sporadic. In such circumstances, the annual total of rain-
fall is the product of very rare events; reliable estimates
of the moments of the frequency distribution of such
low frequency events may require longer records than
were used in this study.

The equation fit to the relationship of QU10 to mean
annual rainfall for homogeneous regions with at least
three stations is

QU10 5 0.813 1 2154.6/(180.8 1 WTM),

where WTM is the regional mean annual rainfall in
millimeters, weighted for record length. The relation-
ship is strong (corrected r2 5 0.79) and Fig. 3 shows
the fitted line in relation to all 258 regions. Residuals
of predicted–estimated QU10 were calculated for all 258
regions. We chose to fit our equation against mean, rath-
er than median, rainfall totals simply because mean an-
nual rainfall is far more commonly reported.

The distribution of regional residuals was arbitrarily
sliced at the hinges of the distribution, yielding three
classes of regions: the lowest and highest quartiles, and
the middle 50%. The lowest quartile thus represents
those regions where the driest year in 10 is drier than
expected for regions of similar rainfall, and the highest
quartiles are those where the driest year in 10 is less
different than expected. This division of the regions is
arbitrary, but it has the advantage of being relatively
robust to the presence of outliers. Conrad (1941)
mapped variability with zero isonomals—lines that di-
vide stations with more from stations with less vari-
ability than expected, but usually without indication of
the magnitude of the difference. In four cases, he in-
dicated areas of especially marked variability: Malden
Island, northeastern Brazil, coastal Peru and Chile, and
an area stretching from northwestern India through Sau-
di Arabia to Ethiopia. While our analyses show the first
two cases as parts of highly variable regions, in the latter
two cases our mapping differs from his: the Peruvian
coast does not seem to be more variable than would be
expected for such an arid climate, and the Horn of Africa
and the northwest Indian subcontinent appear as two
smaller, but distinct regions of variability.
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FIG. 4. Variation in the QU10 on a global basis. Red dots are the stations from the most variable regions, green
are the stations from the middle 50% of regions, and blue are the stations from the least variable regions.

a. Global

The geographical patterning of rainfall data is very
striking, and far from random. Figure 4 illustrates the
distribution of stations of each of the three classes. Al-
though there are scattered outliers of high variability
stations, there is a clear geographical patterning, sug-
gesting that the methods employed reflect underlying
climatic reality. One obvious feature is that oceanic is-
lands have a strong tendency toward variability; As-
cension, in the South Atlantic, is the only station to fall
in the least variable quartile. A second feature of note,
which echoes the findings of Conrad (1941), is that most
high variability regions are located near coasts, and con-
tinental interiors tend to be areas of reduced variability.
When clusters of fewer than three stations are excluded
as possible outliers, highly variable clusters were com-
pared with clusters of low to moderate variability. Var-
iable clusters were significantly more likely to be south
of the equator (Mann–Whitney U test, p 5 0.005) and
have much lower mean elevations (p 5 0.007) than less
variable clusters. They did not vary significantly (p .
0.1) in mean annual precipitation or in mean number of
stations per cluster.

Ropelewski and Halpert (1987) sought regions of
consistent El Niño–Southern Oscillation precipitation
patterns around the globe. Their methods focused on
establishing areas where they could identify seasons of
4 months or greater where there were coherent and fairly
consistent responses to El Niño events. Of the nine trop-
ical regions they identified where an El Niño–related
season brought reduced precipitation, we have data for

eight (not for their ‘‘Micronesia–W. Pacific’’ region),
and there are highly variable regions in each. Rope-
lewski and Halpert’s regions vary greatly, however (see
below), in the proportion of our clusters that are highly
variable. They identified four regions where an El Niño–
related season brought increased precipitation; we have
data for three (not for their ‘‘Central Pacific’’ region),
and in none of these are there any highly variable sta-
tions.

Examining the question of the strength of the rela-
tionship between ENSO events and the patterns of var-
iability presented here is a complex issue, and our dis-
cussion is preliminary. To try to make comparisons with
Ropelewski and Halpert, who focused their attention
only on relatively large regions, we have grouped all of
the highly variable clusters with at least three stations
into 16 macroregions (see Table 4). In five cases, these
macroregions were clearly included in one of Rope-
lewski and Halpert’s regions. The relationship between
El Niño and the droughts in Northeast Brazil has been
shown to be very weak (Rao et al. 1993; Kane 1997)
and was not pursued here. For the remaining nine clus-
ters, we examined the data for all stations in a fashion
similar to that employed by Ropelewski and Halpert.
The monthly rainfall totals for the complete record for
each station were converted to ranks and then percen-
tiles, and then averaged for each month of the 24 months
of the ENSO cycle that they employed, that is, from
July(21) to June(11). The patterns of anomalies for all
stations in a cluster were inspected by eye to identify
seasons of consistently negative or positive anomalies.
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TABLE 4. Macroregions and relationship to seasons of correlated response to El Niño events.

Macroregion
No. of clusters/
no. of stations R–H region* Effect Season Effect

No. of El Niño
yr season

anomalies in
predicted
direction

Baja, Mexico
Tehuantepec, Mexico
Nicaragua–Panama

2/15
2/7
2/6

—
—

CEN

—
—

Negative

—
Jul(0)–Sep(0)

—
Negative

—
6/8

Peru–Ecuador**
NE Brazil
Senegal
Ivory Coast
Angola

2/10
11/159

1/11
1/3
1/4

—
—
—
—
—

—
—
—
—
—

Mar(0)–Jun(0)

—
—
—

Positive

—
—
—

13/16

—
—
—

Mozambique–Zimbabwe
Kenya–Somalia
SW Indian Ocean

2/10
1/3
1/3

SEA
—
—

Negative
—
—

—
—

—
—

—
—

SE China
New Guinea
NW Australia
Queensland
New Caledonia

1/4
1/4
2/9
2/9
1/14

—
ING
NAU
NAU/EAU
FNC

—
Negative
Negative
Negative
Negative

— — —

* From Ropelewski and Halpert (1987).
** Results are for the four stations in the Ecuador cluster; the stations from Peru have far too many months without rainfall to permit

analysis.

When candidate seasons were identified, averages of the
percentiles for each month in the season and each station
were calculated. A Mann–Whitney U test was employed
to test whether the time- and station-averaged percen-
tiles discriminated ENSO years from non-ENSO years.
If they did, time series were plotted to determine the
consistency of the ENSO-related pattern. Finally, Spear-
man rank correlations were examined to determine if
the records for each station were positively correlated
with the average.

In the end, only two macroregions had clear and con-
sistent seasons of precipitation anomalies. In a macro-
cluster of seven stations on the west side of the Isthmus
of Tehuantepec in Oaxaca, a 3-month season [Jul(0)–
Sep(0)] was associated with rainfall deficits and was
identifiable in six of eight ENSO cycles. Along the west-
ern coast of Peru and Ecuador, a macrocluster of two
variable clusters was examined. Here, it was possible
to show a clear positive anomaly in a 4-month season
[Mar(0)–Jun(0)] identifiable for 13 of 16 ENSO events,
for the Ecuadorian cluster only. The Peruvian cluster,
is extremely arid (mean annual precipitation ,3 cm
yr21), and with the majority of monthly records equaling
zero, this kind of analysis proved impossible.

The high variability clusters were then divided into
two groups: those from regions that had detectable El
Niño–related negative precipitation anomalies, and
those that did not, that is, that had no detectable season
or that had a season of positive precipitation anomalies.
These groups did not differ significantly in terms of
mean annual rainfall, the number of stations included
in the clusters, or in elevation. They did differ signifi-
cantly in three ways: the El Niño–related clusters were
more likely to be in the Eastern rather than the Western

Hemisphere (all are Mann–Whitney U tests, p 5 0.020),
they were more likely to be in the Southern Hemisphere
(p 5 0.028), and the El Niño–related clusters were sig-
nificantly farther from the equator (p 5 0.003).

The nine macroregions that do not have a clear season
of ENSO-related negative precipitation anomalies share
few climatic or geographic features as a group. For ex-
ample, they range from very large areas—as Northeast
Brazil—to very small, as Baja, Mexico. It is noteworthy
that four of these clusters fall on opposite sides of the
Atlantic Ocean. Sea surface temperature anomalies in
the tropical Atlantic have been clearly related to drought
in Northeast Brazil, and these may be relevant for the
clusters in Angola, the Ivory Coast, and Senegal (Rao
et al. 1993; Kane 1997). Similarly, three of the clusters
are found in the western Indian Ocean and may be re-
sponding to a common underlying dynamic.

We conclude from this that a regular pattern of sea-
sons of negative precipitation anomalies associated with
ENSO events can contribute to reducing the QU10 of
annual rainfall in some regions, but other factors are
important as well. Our analysis does not permit the con-
clusion that ENSO-related precipitation anomalies are
alone responsible for excessive variability of precipi-
tation in any region.

b. Africa and Arabia

The distribution of stations in Africa is uneven, with
Madagascar represented by only two, and with a poor
coverage in the Zaire Basin and in the Sahara (see Fig.
5). The patterning of rainfall variability is quite striking,
however. Central and Western Africa form a very large
region of reduced annual rainfall variation, and in south-
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FIG. 5. Variation in the QU10 for Africa and Arabia. Red dots are
the stations from the most variable regions, green are the stations
from the middle 50% of regions, and blue are the stations from the
least variable regions.

FIG. 6. Variation in the QU10 for south and Southeast Asia.

FIG. 7. Variation in the QU10 for the western Pacific.

ern Africa there is a similar zone. From roughly the
Tropic of Capricorn north to about 158S there is a zone
of moderate variability, which extends northward along
the East African rift. The zones of high variability are
all much smaller than these features. They are, with rare
exceptions, all along or near the coast, and they are to
be found in restricted areas of Senegal, the Ivory Coast,
Angola and Namibia, and the Somalian and Kenyan
coast. There is a larger zone of increased variability that
includes the Mascareignes, southern Madagascar, and
Mozambique.

Comparison with Ropelewski and Halpert’s mapping
of ENSO-related precipitation in Africa (1987) yields
suggestive relationships. The large area of moderate var-
iability in southern Africa and the more variable region
to its east correspond quite well to their ‘‘southeastern
Africa region’’ where they discovered a consistent de-
cline in rainfall in ENSO years. Their ‘‘equatorial east-
ern African’’ region, roughly centered on Rwanda, Bu-
rundi, and Uganda, appears in this analysis to be a zone
of reduced severity of the driest year in 10. This makes
some sense, since ENSO events tend to bring greater
rainfall to this region.

c. South and Southeast Asia

The interior of southern China and northern penin-
sular Southeast Asia form a zone of reduced variability
(see Fig. 6). There is moderate variability from penin-
sular India through peninsular Thailand and Malaysia
and into most of island Southeast Asia, though there are
a scatter of stations with greater and lesser variability.
There are two compact zones of high variability. The
first, stretching from southern Taiwan to Hainan Island,
is clearly coastal. The second, in northwestern India and
Pakistan, is only in part coastal.

Comparison with Ropelewski and Halpert’s maps
suggest less concordance than in the case of Africa.
Their ‘‘Indian’’ region shows a rainfall deficit in ENSO
years, but there is no indication of more than moderate
variability in the analysis performed here. Nor do they
detect an ENSO influence in the region of high vari-
ability detected here. On the other hand, their ‘‘Indo-
nesia–New Guinea’’ region of ENSO-related precipi-
tation deficit includes all of island Southeast Asia except
far northern Sumatra; in our analysis there are a scat-
tering of more variable stations here.

d. Western Pacific

This is clearly a region of relatively high rainfall var-
iability (see Fig. 7). There are very few stations with
low variability, and four substantial regions of high var-
iability: 1) coastal northwestern Australia; 2) northern
and central Queensland, extending along the coast to
the Tropic of Capricorn; 3) Irian Jaya and western Papua
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FIG. 8. Variation in the QU10 for the tropical New World.

New Guinea, with all stations coastal; and 4) New Cale-
donia and some nearby oceanic islands. The high var-
iability of this region is not unexpected, since this region
has long been described as such. In concordance with
the previous regions, there is a tendency for the high
variability stations to be along the coasts or on islands.
It is important to remember that the contrast between
the large area of moderate variability stretching longi-
tudinally across Australia, and the higher variability area
of northern Queensland, is one of relative variability,
not absolute variability. Central Australia has high var-
iability of annual rainfall, just as almost all arid regions
do. Queensland stands out in this analysis for being
more variable than other areas with comparable mean
annual rainfall.

e. The New World

The pattern in the New World recalls that of Africa
more than the western Pacific (see Fig. 8). The conti-
nents are, in the interior, fairly uniform in exhibiting
low to moderate relative variability. Most coastal zones
fall within the moderate class as well. In terms of high
variability, there are two patterns, a scattering of small
regions in largely coastal zones, and one very compact
and very well documented region of northeastern Brazil.
Sixty-three percent of all of the stations in this sample
from South America are located in northeastern Brazil.
This area has long been known to have a highly variable
climate, and the extraordinary density of observation
stations may be a response to the frequent droughts that
occur here. There are seven much smaller zones of high
rainfall variability. They include the Baja Californian
peninsula, the Isthmus of Tehuantepec, an area of Nic-
aragua and Panama, a coastal zone of Ecuador and Peru,
Curaçao, Barbados, and a single station at the mouth of
the Amazon. Ropelewski and Halpert had little data for
South America, but there is a fair correspondence be-
tween the distribution of more variable stations and their
‘‘Central America and the Caribbean’’ zone of reduced
precipitation in ENSO years.

4. Summary and conclusions

This study of geographical distribution of variability
in the Tropics is the first such effort since that of V.
Conrad in 1941. Conrad mapped variability in precip-
itation for the entire world, using records from 384 sta-
tions. For the area between 308N and 308S, he had 149
stations. The present study is based upon 10 times as
many stations, and thus we are able to characterize the
distribution of variability with more precision than Con-
rad. There remain many areas of the globe where the
distribution of stations is quite sparse, and in the future
it may be possible to refine the results presented here.

In general, the distribution of high and low variability
regions mapped here conform in a general way to both
received wisdom, and to the mapping of reduced pre-
cipitation teleconnections to ENSO phenomena. Nich-
olls (1988) has already shown a relationship between
rainfall variability and ENSO, in general, so this is not
surprising. On the other hand, the maps also identify
smaller areas of high variability that are not ENSO re-
lated, and for which other explanations must be sought.
The most important contribution of these maps is that
they are at sufficiently fine a scale to make it possible
to identify variability relevant to problems of the ecol-
ogy and evolution of particular species and human com-
munities. Researchers interested in particular areas will
need to seek other sets of rainfall data in order to ex-
amine patterns of rainfall variability at a finer scale and
with more precision.
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