
Advanced NuPIC Programming

Document Version 1.8.1
September 2008

Important Information

This document contains proprietary information of Numenta Inc, and its receipt or
possession does not convey any rights to reproduce, disclose its contents, or to manufacture,
use or sell anything it may describe. It may not be reproduced, disclosed, or used without
specific written authorization of Numenta Inc.

Numenta Inc, reserves the right to make changes in its products without notice in order to
improve design or performance characteristics.

This document neither states nor implies any warranty of any kind, including but not limited
to implied warrants of merchantability or fitness for a particular application.

The information in this document is believed to be accurate in all respects at the time of
document, but is subject to change without notice. Numenta Inc. assumes no responsibility
for any error or omissions, and disclaims responsibility for any consequences resulting from
the use of the information included herein.

Copyright © 2006-2008 Numenta Inc. ALL RIGHTS RESERVED.

 Advanced NuPIC Programming

| 3

Contents

Figures . 7

Preface . 9

Scope of Document . 10

Document Overview . 10

Related Documentation . 10

Conventions . 11

Document History . 11

For More Information . 12

1 Software Components. 13

Introduction . 14
Numenta Tools . 14
Numenta Runtime Engine (NRE). 14
Runtime API. 15

NRE Supervisor Process . 16

NRE Node Processors (NPs) . 17
Startup Sequence . 17
Loading an HTM Network . 17
Running the HTM Network . 17

Sessions and NRE Supervisor. 19
What is a Session? . 19
Session Startup . 19
Supervisor/Session Interaction. 20
Interaction Example . 20

Understanding Numenta APIs . 22

2 Developing HTM Networks: Advanced Topics . 23

NuPIC Node Types . 24
Getting Node Help . 24
Available Node Types. 24

Node Inputs, Node Outputs and Links. 26
Node Inputs and Output . 27
Links . 28
Link Types . 28
Regions . 30

Inside a Learning Node: How Learning and Inference Happen . 31
Related Documentation . 31
Learning and Inference During Training . 31
Supervised and Unsupervised Learning . 32
What Nodes Do During Learning. 33
What Nodes Do During Inference . 34

Affecting Learning Node Behavior With Node Parameters . 36
Parameters in Both Learning Nodes . 36
Parameters in SpatialPoolerNode . 36
Parameters in TemporalPoolerNode . 37

Working with HTM Network Files . 39

Advanced NuPIC Programming

4 | Contents

Numenta .xml Files (Numenta Network File Format) . 39
Manipulating Trained Network Files. 39
Compression Support for HTM Network Files . 40

3 Running HTM Networks With Sessions . 41

Running HTM Networks: Options . 42

Understanding the Training Process . 43

Using the Session API to Run Your HTM Network . 44
Starting the Session . 44
Running the HTM Network . 45

Sessions and Session Bundles . 49

What RuntimeNetwork.run() Does . 51

Accessing Session Information at Runtime . 53
Interacting with Sessions . 53
Examining Node Content . 53

Look At Output Information. 55
Examining Scripting/Session Commands . 55
Log Files . 55
The launch.py File . 56

4 Scheduling Node Processing . 57

Understanding Scheduling. 58
Scheduler Overview . 58
Supported Schedulers. 58

Different Schedulers with Multiple NPs . 59
Using the Basic Scheduler with Multiple NPs . 59
Using the Pipeline Scheduler With More Than One NP . 61

Profiling and Load Balancing . 63

5 Using the Numenta Runtime Engine: Advanced Topics . 65

Introduction and Terminology . 66
Terminology. 66
Singe-NP Process and Multiple NPs . 66

NRE Process Structure with Multiple NPs. 67

Hardware Configurations. 68
Single-CPU Machine . 68
Multi-CPU Machine . 68
Cluster (Unix-like Systems Only) . 69

Running in Parallel: Experiment Mode. 70

Running in Parallel: Large Problem Mode . 71
Using RuntimeNetwork in Large Problem Mode . 71
Using Sessions in Large Problem Mode . 71
Using TrainBasicNetwork() in Large Problem Mode . 72

Setting up a Cluster to Run NuPIC . 73
Introduction to Cluster Setup. 73
Requirements . 74
Cluster Performance Bottlenecks and Host Hardware . 75

How to Use NuPIC in Complex Configurations . 76
Using Multiple NPs . 76
Starting a RuntimeNetwork or a Session that Runs on a Cluster. 76
Launching on a Remote Host . 78

SessionConfiguration Object Methods . 81

 Advanced NuPIC Programming

Contents | 5

A Examples . 83

Bitworm Example . 84
Problem Definition . 84
Implementation . 84
Exploration and Verification . 84
Notes . 84
See Also . 84

Waves Example . 85
Problem Definition . 85
Implementation . 86
See Also . 86

Net_Construction Examples . 87
Example Scripts . 87

Flu Example. 89
Problem Definition . 89
Implementation . 89
Learning from the Example . 90

Pictures Example . 92
Problem Definition . 92
Implementation . 92
Exploration and Verification . 94
Experimenting Using the Pictures Demo GUI . 95

B Numenta NetExplorer . 99

Using Numenta NetExplorer. 100
NetExplorer Basics . 100
TestCrossParameters Class. 101
TestCrossParameters Options . 102
Classes Overview . 102
Using Your Own DataInterface . 103
Using Your Own NetInterface . 104
Parameterized Tools . 105
Advanced Exploration . 105

Running NetExplorer Tests in Parallel . 108
Parallel HTM Networks. 108

Glossary .111

Index . 117

Advanced NuPIC Programming

6 | Contents

 Advanced NuPIC Programming

| 7

Figures

Figure 1 Runtime Components .14

Figure 2 Node Inputs and Outputs .27

Figure 3 Node Outputs, Inputs, and Links .27

Figure 4 Common Link Types .29

Figure 5 1-D Region of Four Nodes (Top) and 2-D Region of 2x3 Nodes (Bottom). .30

Figure 6 Three-layer HTM Network Example .33

Figure 7 MaxDistance Example .37

Figure 8 Session Bundle Example .49

Figure 9 Example Network for Basic Scheduler, Multiple NPs .59

Figure 10 Level-skipping HTM Network (Left) and HTM Network Using Pass-through Nodes (Right).62

Figure 11 Different Configurations on Multi-CPU Machines .69

Figure 12 Running in a Clustered Environment .69

Figure 13 Typical Cluster Configuration .73

Figure 14 Processes After Launching Remotely on a Single Host .78

Figure 15 Processes After Launching 3 NPs on a Remote Host .78

Figure 16 Processes After Launching the NRE on a Remote Cluster .78

Figure 17 Waves Example .85

Figure 18 Waves State Example: Category 3 Data .85

Figure 19 Example of Rake in Pictures Example Set .92

Advanced NuPIC Programming

8 | Figures

 Advanced NuPIC Programming

| 9

Preface

This document is the companion volume to Getting Started With NuPIC. This document
discusses advanced topics for developers who implement an HTM Network with the
Numenta Platform for Intelligent Computing (NuPIC in the rest of this document). This
preface gives some introductory information.

Topics

❍ Scope of Document, page 9

❍ Document Overview, page 9

❍ Related Documentation, page 10

❍ Conventions, page 10

❍ Document History, page 11

❍ For More Information, page 12

Scope of Document

This document is meant for developers who want to create HTM systems using NuPIC
and who have already explored the materials in Getting Started with NuPIC.
The document includes discussions of the concepts behind the technology and practical,
step-by-step instructions for the tasks involved in designing and implementing your HTM
Network.

Document Overview

This document consists of the following chapters and appendixes:

❍ Chapter 1, Software Components, explains how the different NuPIC components
interact at runtime.

❍ Chapter 2, Developing HTM Networks: Advanced Topics, explores what it takes to
build an HTM Network. This chapter includes background information and practical
advice, and also explains how each task was performed for the Bitworm example
program.

Advanced NuPIC Programming

10 | Preface

❍ Chapter 3, Running HTM Networks With Sessions, illustrates how to use the Session
API to invoke the Numenta Runtime Engine and explains what happens at runtime
using some examples.

❍ Chapter 4, Scheduling Node Processing discusses how the NRE schedules node
processing using the basic scheduler or the pipeline scheduler.

❍ Chapter 5, Using the Numenta Runtime Engine: Advanced Topics, explores the
concepts behind running in multiprocessor mode and running remotely, and explains
how to run in these advanced configurations.

❍ Appendix A, Examples, gives overview information for some the examples included
with NuPIC.

❍ Appendix B, Numenta NetExplorer, explains how you can test your HTM Network
with different parameter settings using the NetExplorer tool.

A Glossary and an Index complete the document.

Related Documentation

Getting Started With NuPIC, the companion volume to this document, explains the HTM
Development process using a simple example.
A number of white papers explore the concepts introduced in this document in more
detail:

❍ The white paper The HTM Learning Algorithms is an in-depth discussion of how HTM
Networks work.

❍ The Numenta Node Algorithms Guide discusses the learning algorithms implemented by
the NuPIC learning nodes in detail.

❍ The white paper Problems that Fit HTMs explains which problems are well suited for
HTM Networks and which problems are better solved by more traditional technology.

Developers with the appropriate license can use the Numenta Node Plugin Developer’s Guide
to learn about developing custom nodes.

Conventions

This document uses the following conventions:

❍ All filenames, code examples, and names of code elements are displayed in code font.

❍ Document names are given in italic font.

 Advanced NuPIC Programming

Document History | 11

This document uses the following icons:

Document History

This section lists changes made in the specified version of the document. Note that
document version numbers do not correspond to release numbers.

Table 1: Icons used in this document

Icon Description
Note. A noteworthy item. If you do not pay attention to a note, nothing bad is likely to happen.

Warning. If you do not pay attention to a warning, data loss or other problems may result.

Tip. Paying attention to a tip may make it easier and faster to use Numenta software.

Document Release Description
1.0 March 2007 First release.

1.0.1 March 15 2007 Minor bug fixes including update of white paper name, Node Plugin Developer’s Guide document
name, script name, and similar issues. Added Document History.

1.0.2 April 2007 Minor bug fixes. Added information on different ways of saving the HTM Network.

1.0.3 May 2007 Replaced node tools with CreateNode() function.
Numerous name changes including pooler to spatial pooler and grouper to temporal pooler.
Number of node processors for SimpleHTM is now specified in call to train() or test(), not
as part of the constructor.
Added ImageSensor appendix.

1.0.4 August 2007 Minor fixes/updates:
Pipeline scheduler fill/drain is now done by NuPIC.
ImageSensor appendix updated significantly.
Miscellaneous updates to NetExplorer section.

1.5 September 2007 Completely restructured this guide. All basic information was moved to Getting Started With
NuPIC. The focus of this document is now on more advanced information such as the
architecture, using sessions, running in different configurations, and so on.

1.6 January 2008 Added information on time-based inference. Miscellaneous minor bug fixes.

1.7 May 2008 Replaced discussion of SimpleHTM with discussion of revised Network class. Changed
document to reflect two nodes per level change. Replaced Zeta1Node with other node types.
Migrated chapter 1 to Getting Started With NuPIC. Revamped architecture chapter.

Advanced NuPIC Programming

12 | Preface

For More Information

The Numenta website includes a variety of educational materials and forums to help you
find answers to your questions.
For additional information, see http://numenta.com/for-developers.php.

1.8 June 2008 Updated document to reflect new node types and new linking behavior. Added some
information on Helper functions. Added information on new examples. Removed tasks
overview chapter. Migrated ImageSensor appendix to image framework documentation.

1.8.1 September 2008 Minor bug fixes.

Document Release Description

http://www.numenta.com/for-developers.php

 Advanced NuPIC Programming

| 13

1 Software Components

This chapter explains how the different NuPIC components work together to create and
run an HTM Network.
This chapter is for developers who are interested in the NuPIC architecture. Skip this
chapter if your main interest is using the advanced APIs.
See the Getting Started with NuPIC manual if you’re interested in learning about developing
an HTM Network.

Topics

❍ Introduction on page 14

❍ NRE Supervisor Process on page 16

❍ NRE Node Processors (NPs) on page 17

❍ Sessions and NRE Supervisor on page 19

❍ Understanding Numenta APIs on page 22

Advanced NuPIC Programming

14 | Chapter 1 Software Components

Introduction

NuPIC has the following components, shown in Figure 1. The rest of this section
discusses each component in more detail.

Figure 1 Runtime Components

Numenta Tools
Numenta Tools allow you to create the HTM Network structure, run the HTM Network,
and analyze the results of the run. See Understanding Numenta APIs on page 22 for an
overview of the different available APIs.

Numenta Runtime Engine (NRE)
The NRE processes the HTM Network. You can run the NRE in different
configurations, from a simple HTM on the single processor of your local machine all the
way up to a complex HTM on a cluster in a remote location.

The NRE consists of these components:

❍ The Supervisor process manages node processors (NPs) and communicates with the
Session API. The Supervisor starts and stops the NRE and is active while the NRE is
running. It is responsible for:

— performing global HTM Network operations

— distributing nodes across NPs and coordinating the NPs

— acting as the central point of communication between external tools and the NPs

Numenta Python APIs such as RuntimeNetwork and the TrainBasicNetwork() helper
function call Session to interact with the NRE.

Numenta Tools

Supervisor API

Configuration tools

NRE management
tools

Analysis tools

Supervisor
Process

Fileserver

Node Processor

Runtime API

Node
Plug-in API

Numenta Runtime Engine
(NRE)

Parallel computing with the NRE is an advanced topic. While it is easy to turn on parallelism in
the NRE, you are unlikely to see better performance unless you understand how multiprocessing
works, have an HTM Network that is suitable for multiprocessing, and take into account the
factors discussed in the relevant chapters of this document (see Using the Numenta Runtime
Engine: Advanced Topics on page 65).

 Advanced NuPIC Programming

Introduction | 15

❍ The node processors perform the actual node computations. See NRE Node
Processors (NPs) on page 17.

You can use Numenta Tools to create nodes that implement the Numenta algorithms.
For custom algorithms, you can use the Node Plugin API discussed in the Node Plugin
Developers Guide.

❍ Launcher — The launcher is of interest only to developers with multi-CPU versions
of NuPIC, discussed in Using the Numenta Runtime Engine: Advanced Topics on
page 65.

Runtime API
The runtime API handles all communications between the Supervisor process and the
Session. It is the primary means of communication with the NRE. The Session API is
the lowest-level client interface to the runtime API. RuntimeNetwork is a higher-level API
used by most example applications, often in conjunction with the RunBasicNetwork() and
RunBasicNetwork() helper function.
Internally, the runtime API consists of these components, which are only relevant under
special circumstances:

❍ Supervisor Commands — Text-based requests that tools can send to the Supervisor
to control the Supervisor’s runtime behavior.

Applications can use Session methods that wrap Supervisor commands to interact
with the Supervisor if that interaction seems necessary. Each request consists of the
command name and optional arguments. For example, run 1000 runs the HTM
Network for 1000 iterations.

For help for all Supervisor commands, type the following at the Python command
line:
from nupic.network import Session
mySession = Session ('test')
mySession.start()
mySession.sendRequest('help')

To get help on a specific command, call mySession.sendRequest('help <cmdName>').

❍ Numenta Supervisor Access Protocol (NSAP) — The NSAP sockets-based protocol
is the basic mechanism used to connect with the NRE.

At runtime, an instance of the NRE listens for NSAP requests.

NSAP is used to establish a direct socket connection between the client tool
application and the NRE. NSAP includes protocols for connection, authentication,
and sending and receiving commands. The basic mechanism is relatively high
bandwidth. External tools can repeatedly connect to and disconnect from the NRE
using NSAP. Once an NSAP connection is created, it establishes the basic
communication channel through which Supervisor commands can be sent to the
Supervisor over the network.

Most developers do not need to be familiar with NSAP because they use the
Session API or the RuntimeNetwork API to communicate with the NRE.

Advanced NuPIC Programming

16 | Chapter 1 Software Components

NRE Supervisor Process

The Supervisor’s primary functions are to support the tools interface and to manage the
NPs. When launched, the Supervisor initiates a startup sequence to set up
communication with the tools, set up communication with each of the NPs, and validate
the license file. Once the initialization has completed, the Supervisor logs success, and
then enters an event loop and waits for and processes events from the tools and the NPs.
During normal operation, the Supervisor must listen for and respond to:

❍ Commands coming in via the Session API through a connection.

❍ Messages received from the NPs. Because the Supervisor is a single-threaded design,
these operations are done in the context of an event loop.

Once startup has completed, the Supervisor enters its main event loop, which goes
through these steps:

1. Checks for a connection request from an external tool. If there is a request, opens a
new connection to handle the connection and starts the NSAP connection
negotiations.

2. Checks for incoming data on any established NSAP tool connections. Collects all
incoming data. If a complete request has arrived, what happens next depends on
whether the connection has been established:

— If still in the connection negotiation phase, the event loop processes the next stage
of connection negotiation.

— If the connection has been established, the Supervisor:

a. Extracts the command line from the NSAP request

b. Passes the command line to the command-processing logic for parsing and
execution

c. Collects the results of the command from the command processor and sends it
back to the tools over the connection.

While processing the current request, the Supervisor is unresponsive to additional incoming
requests. In steps 1 and 2b above, a command is passed to the command processor for
execution. If a command takes a significant amount of time to process, the tools might notice a
significant response time lag if they issue another request during this time.

 Advanced NuPIC Programming

NRE Node Processors (NPs) | 17

NRE Node Processors (NPs)

A Node Processor (NP) process runs a portion of an HTM Network on a CPU. There
can be one or more active NPs for any instance of the NRE. These NPs can run on the
same host as the Supervisor or be distributed across a number of hosts. As part of
running the network, each NP communicates with the Supervisor and with other NPs on
the network using an internal API.
The NP instantiates nodes, which are implemented as plug-ins. You must therefore make
sure that each NP has access to the plug-in Python file or C++ object file. The NP is also
responsible for managing a local scheduler, see Understanding Scheduling on page 58.

Startup Sequence
When launched by the Supervisor, an NP performs the following startup operations.

❍ Performs basic initialization.

❍ Establishes communication with the Supervisor.

❍ Logs a message stating that the startup sequence completed successfully. The log
message includes the host name and the process ID of the NP.

❍ Starts listening for private commands from the Supervisor.

Loading an HTM Network
The HTM Network load process is centrally managed by the Supervisor. The NP
performs the following operations:

1. If an HTM Network is already loaded, it is removed from memory.

2. The NP loads the network as follows:

a. Receives information from the Supervisor describing nodes to be instantiated.

b. Instantiates each node in its sub-network, loading plug-ins as required. The NP
logs any error detected during node instantiation.

c. Initializes the currently selected scheduler with the list of nodes.

d. Initializes some default state for each node output.

3. After initialization is complete, the NP waits for further commands from the
Supervisor for running the HTM Network.

Running the HTM Network
Once the HTM Network has been instantiated, the NP is in a paused state.
The Supervisor initiates the start of computation. Running the network involves cycling
through the nodes in an order determined by the active scheduler. Each node is given a
chance to perform its compute() operation.

Advanced NuPIC Programming

18 | Chapter 1 Software Components

The Supervisor can continue to send requests to the NP at any time. The NP processes
these requests in between individual node computations. It does not need to be
responsive while a node computation is in process.
In a setup with multiple NPs, each NP transmits its output to any other NPs that require
it as each node updates its output. The NP has full control to determine the frequency of
these broadcasts and any optimizations that might be performed. Likewise, each NP
receives node outputs from other NPs.

 Advanced NuPIC Programming

Sessions and NRE Supervisor | 19

Sessions and NRE Supervisor

The Session API allows you to manage an NRE session from Python, to communicate
with the NRE Supervisor, and to collect any runtime results produced during execution.
See Using the Session API to Run Your HTM Network on page 44.

What is a Session?
The Python Session class allows users to interact with the NRE. You can use a Session
to launch the NRE, load HTM Network files, control execution, and shut down the NRE
on completion. A Session instance encapsulates the inputs, outputs, and interaction
involved in a single use of the NRE.
Internally, the session communicates with the NRE using the Numenta Supervisor
Access Protocol.
A typical session makes use of several files. To organize these files for easy transfer,
analysis, and cleanup, the session manages a session bundle: a single filesystem directory
created by the Session instance. The bundle is created immediately on session
instantiation. Session methods allow you to add files to the bundle, extract files from the
bundle, copy the bundle to and from a remote host, and clean up the bundle when it is no
longer needed. See Sessions and Session Bundles on page 49 for more information.
Here’s how the different components interact:

❍ A session has full control over its files and over the NRE it launched. Different
sessions write to different output files and launch and communicate with different
Supervisor processes.

❍ A session can request that the NRE load or unload an HTM Network file and can
control how the NRE processes that network file. The NRE manages only one
network at a time.

❍ After a session has been shut down, you can still access session outputs for offline
analysis.

Session Startup
A Session instance can launch the NRE on a local or a remote host. You can launch the
NRE using a number of parameters which determine, for example, the set of remote
hosts, distribution of processes, executable, logging and instrumentation configuration,
and communication options. All parameters have defaults that you can override for
custom Session configurations.
During launching of the NRE, a session goes through these steps:

1. Creates a launch script called launch.py in the local session bundle and saves it to the
resources directory. This script is ultimately executed on the NRE host.

In many cases, you don’t use sessions explicitly but work instead with the RuntimeNetwork API,
which encapsulates an HTM Network structure and a session, or the corresponding
RunBasicNetwork helper function. See Running the HTM Network, page 55 in Getting Started
With NuPIC.

Advanced NuPIC Programming

20 | Chapter 1 Software Components

2. If running in a cluster environment, copies the local session bundle to the host that
will be used for launching the NRE.

3. Runs the launch script on the launch host. The working directory for the launcher is
the session bundle.

4. Establishes a network connection with the Supervisor that was launched by the launch
script.

5. Authenticates the connection by responding to a Supervisor challenge prompt.
Failures in session launch and communication leave the session in an unconnected state.
In that case, an exception results and no attempt to connect or communicate succeeds.
If communication fails after a successful connection (for example, due to a loss of
network access), the Session instance is put in an unconnected state and further
communication fails.

Supervisor/Session Interaction
The Session API allows you to affect NRE computation and retrieve state from the
running HTM Network. Any command sequence that can be executed by the Supervisor
can be run through a Session instance. For example, the session can adjust the set of
nodes to be scheduled, can compute all scheduled nodes repeatedly for a number of
iterations, and can pause computation at any time. The session can also tell the Supervisor
to wait, which means to block all communication and ignore all requests until all running
computations complete.

❍ When the Supervisor is not in a wait state, every request from a session to the
Supervisor generates an immediate response.

❍ The response is sent back from the Supervisor over the current communication
channel, is interpreted by the Session instance, and is returned as a return value from
the Session.sendRequest() call.

Interaction Example
If your program calls the Session.getNetworkDescription() method, the following
events occur:

1. The Session sends the netPrint command to the Supervisor.

2. The Supervisor outputs descriptions of a set of HTM nodes to a string.

3. The Supervisor returns that text string as a normal response.

4. The Session waits for the response, receives the text string (marked as normal) and
returns a RuntimeResponse data structure.

The RuntimeResponse data structure is a class in the tools library. RuntimeResponse has a
type (normal, exception, timeout, unconnected), and a response message. The caller
receives the response and can act on the included message.

 Advanced NuPIC Programming

Sessions and NRE Supervisor | 21

If a request that arrives in the Supervisor generates an error exception upon execution,
the Supervisor catches this exception and returns an exception response. The session
recognizes this response and in turn throws a Python exception. When possible, the
exception includes the exception message as the response message. The calling code in
the local application should check whether the response is an exception and consider the
exception message an error.
If communication between the Supervisor and the session fails — either during the
original request or while retrieving the response — an unconnected response is returned
from the Session API. This response signals that the connection between the session and
the Supervisor is in failure mode and additional communication should not be attempted.
In interactive applications, blocking session calls could hurt responsiveness. Some
operations, like Session.loadNetwork() and session.saveRemoteNetwork() may take a
long time to complete, and give no feedback while they wait. The Session API allows you
to specify a timeout to prevent calls from blocking. If the session has not received a
response within a specified amount of time, the Session API generates and returns a
timeout response, which has no associated response message. The timeout response
indicates to the caller that session believes it is missing a response, and the session will
check for that response before receiving any others (as all communication is received in
order). The Session.setTimeout(number_of_seconds) and waitForResponses()
methods allow you to manipulate the timeout time.
The Supervisor supports certain requests that query the state of the HTM Network.
These queries often result in responses that contain a text description of the state
requested (assuming a normal response). The application can retrieve either the raw text
response or both the raw text and the parsed data of the response from the
RuntimeResponse object.

Advanced NuPIC Programming

22 | Chapter 1 Software Components

Understanding Numenta APIs

Table 2: considers for different application types the main tasks the application needs to
perform and the API the applications can use to perform them.
For any of the application types, you can use the Numenta Visualizer and Numenta
NodeInspector tools to examine, debug, and improve the HTM network.

Table 2: Numenta APIs for Creating and Running HTM Networks

Application Creating HTM Running HTM
Basic, for example
Bitworm

Helper functions:
AddSensor()
AddLevel()
AddClassifier()

Helper function:
RunBasicNetwork()

Allows you to run the whole network.

Complex Network API
Link API
Region API

RuntimeNetwork with run policy. Allows you
to select levels to run.
(TrainPhase for default nodes)

Custom learning
algorithm

Node constructor
See Network Creation with Node
Constructors, page 34 in Getting Started With
NuPIC.

.

Run NRE remotely or
run clustered NREs

Use Session API for setup,
RuntimeNetwork for running the network.
See Running HTM Networks With Sessions,
page 41.

Vision networks Vision framework

 Advanced NuPIC Programming

| 23

2 Developing HTM Networks: Advanced Topics

This chapter discusses advanced HTM development topics. It is a companion chapter to
Constructing an HTM Network, page 41 in Getting Started With NuPIC, which discusses
HTM Development fundamentals and explores them using example programs.

Topics

❍ NuPIC Node Types, page 24

❍ Node Inputs, Node Outputs and Links on page 26

❍ Inside a Learning Node: How Learning and Inference Happen on page 31

❍ Affecting Learning Node Behavior With Node Parameters on page 36

❍ Working with HTM Network Files on page 39

In most cases, you can use the helper functions to perform the tasks discussed in this chapter. If
you need to customize the default behavior, this chapter can give guidance.
A good example for potential customization is the source code for the helper functions in
$NTA/lib/python2.5/site-packages/nupic/network/helpers.py

Advanced NuPIC Programming

24 | Chapter 2 Developing HTM Networks: Advanced Topics

NuPIC Node Types

Numenta ships a number of nodes, including learning nodes and sensor and effector
nodes. You construct your HTM Network using these node types.

Numenta Tools perform validation as you create and save nodes. During node creation
the tools check whether each parameter is of the right type. When you link nodes or link
regions, tools check whether the link you use is supported. Numenta Tools also check for
incompatible combinations of parameters.

Getting Node Help
In NuPIC, most node types are implemented as plugins, so pydoc cannot generate help
on node-specific parameters and commands. NuPIC includes nodeHelp, which reads in
each plug-in’s specification and displays help for the corresponding node. For example,
the following command generates extensive online help for SpatialPoolerNode:
from nupic.network import *
nodeHelp(‘SpatialPoolerNode’)

Note that getting node help is slightly different for nodes that were implemented in
Python, not in C++, such as ImageSensor:
nodeHelp("py.ImageSensor")

Available Node Types
This section gives an overview of available node types.

Sensors

❍ VectorFileSensor is a sensor that reads in text or csv (comma-separated values) files
containing lists of vectors and outputs these vectors in sequence. The output is
updated each time the sensor’s compute() method is called. If repeatCount is greater
than 1, each vector is repeated that many times before moving to the next one. The
sensor loops when the end of the vector list is reached.

If the file contains an incorrect number of floats, the sensor has no way of checking
assignments. The size of pattern set is specified by featureVectorLength() when
using the AddSensor helper function or the output size in a CreateNode() call.

Currently it silently ignores the last vector of floats if there is an incorrect number.
The file to be read is specified using the loadFile execute command at runtime.

The following examples show how you can load a text file or a csv file:
sensor.execute('loadFile', trainingFile) //text file
sensor.execute('loadFile', trainingFile, 3) //csv file

You can use VectorFileSensor to submit data files or category files to your HTM
Network.

Because most node types are implemented as C++ plugins to the NRE, you cannot create node
subclasses for them in Python.

 Advanced NuPIC Programming

NuPIC Node Types | 25

❍ py.ImageSensor is a custom sensor created as a Python plug-in. This sensor was
originally designed for the Pictures example but has been expanded to handle
grayscale images. Because this node has been implemented in Python (not C++),
getting help for it differs from getting help for C++ nodes.
nodeHelp("py.ImageSensor")

Learning Nodes

The following node types encapsulate the learning algorithms. Spatial and temporal
pooling is in separate nodes. Usually, each spatial pooler node feeds directly into one
temporal pooler node, but you can experiment with different fan-ins from spatial to
temporal pooling. You can experiment with learning node behavior by using different
parameters, see Affecting Learning Node Behavior With Node Parameters on page 36.

❍ SpatialPoolerNode — Performs spatial pooling operations based on parameter
settings.

❍ TemporalPoolerNode — Performs temporal pooling operations based on
parameter settings.

❍ py.GaborNode — Performs Gabor filtering (spatial pooling). The algorithm of this
in this node is customized to work with image applications. Node input must come
from an ImageSensor or from a node with identical output format. See the Images
example.

Classifier Nodes

Classifier nodes learn coincidences and map those coincidences to categories. In
inference mode, classifier nodes compute for each input vector the category to which that
input vector belongs. The output of a classifier node is a distribution over the categories
which represents how likely the input vector is to belong to each of those categories.
See NodeHelp for each node for more information.

❍ py.SVMClassifierNode — Implements the SVM (support vector machines)
algorithm.

❍ py.KNNClassifierNode — Implements the KNN (k-nearest neighbor) algorithm.
The node can perform learning and inference simultaneously.

❍ Zeta1TopNode — Implements a Naive Bayes algorithm. This node, which was also
available in earlier releases of NuPIC, can perform learning and inference
simultaneously. This node is added by default if you use the AddClassifierNode()
helper function.

Effector Nodes

Effector nodes communicate with the outside world. VectorFileEffector receives input
and writes it to a text file. You can specify the target file name using the setFile execute
command at runtime.
effector.execute ('setfile', 'myeffector42.txt')

Advanced NuPIC Programming

26 | Chapter 2 Developing HTM Networks: Advanced Topics

Other Nodes

PassThroughNode copies its input to its output. Both input and output must have
4-byte elements. A PassthroughNode might be useful if a sensor needs to connect to a
node that’s not at phase 1.
See the PicturesNetworkPassThrough.py script in the net_construction example set.

Node Inputs, Node Outputs and Links

When the NRE runs your HTM Network, data are passed from one node to another as
part of learning and inference. This section discusses node inputs, node outputs, and
links.

❍ Node inputs — Each node can have multiple named inputs, through which it receives
data from other nodes. Sensor nodes don’t have inputs because they receive data from
outside the HTM Network, not from other nodes.

Each node has a predefined list of available named inputs, similar to arguments in a
function signature. If one named input receives data from multiple nodes, the data are
concatenated, as in Figure 3, Node Outputs, Inputs, and Links.

❍ Node outputs — Each node can have multiple outputs, through which it makes data
available to other nodes. Effector nodes don’t have outputs because they send data
outside the HTM Network not to other nodes.

Each node has a predefined list of available named outputs, similar to return
arguments in a function signature. Node output names and output element type are
specified as part of the node class definition by default, your program can’t change
them. See Node Inputs and Output, page 27.

A node output can be available to more than one node at the next level.

❍ Links — Links between nodes map outputs to inputs. While output from a node can
be made available to any other node in the HTM Network, you must create a link to
connect the node’s output to another node’s input. See Links, page 28.

 Advanced NuPIC Programming

Node Inputs, Node Outputs and Links | 27

The following diagram illustrates node inputs, node outputs, and links using the input and
output names of the node types included with this release. See NuPIC Node Types,
page 24, for more information.

Figure 2 Node Inputs and Outputs

Node Inputs and Output
Each node input or output is a contiguous array of elements of the same size. For nodes
currently included with NuPIC, it’s an array of floating-point numbers. You can link any
output with any compatible input (that is, input with the same element size and type).
Multiple links can be attached to the same input, as shown in Figure 3. Inputs are
concatenated in the order in which the links are created.

Figure 3 Node Outputs, Inputs, and Links

NaiveBayesClassifierNode

categoriesOut

categoryIn

VectorFileSensor CategorySensor

SpatialPoolerNode

bottomUpOut

bottomUpIn

SpatialPoolerNode

bottomUpOut

bottomUpIn

TemporalPoolerNode

bottomUpOut

bottomUpIn

TemporalPoolerNode

bottomUpOut

bottomUpIn

}

element size 4 bytes element count = 16

element count = 6

output 1 output 2

Advanced NuPIC Programming

28 | Chapter 2 Developing HTM Networks: Advanced Topics

Node inputs and outputs have the following parameters:

❍ Element size — Size of the individual entries in the output vector. In Figure 3 above,
element size is 4 bytes. Element size for output and input must be the same. All nodes
included with the Numenta Tools framework are already the same size, but if you
create a custom node, you must take care of matches.

❍ Output element count — Each output has an output element count (the number of
entries in the vector) which you can specify when you create the node. Node outputs
are allocated statically. The number of elements for the output is set at startup and
does not change during HTM Network operation.

❍ Data type — All nodes included with NuPIC have a vector of floating-point numbers
as output; however, outputs can be any data type. If you create or use a custom node,
that node might use other data types.

❍ Name — Each output has a name, which is predefined for that type of node. For
example, both SpatialPoolerNode and TemporalPoolerNode use bottomUpOut for its
bottom up outputs. The VectorFileSensor has a single output named dataOut. See
NuPIC Node Types, page 24 for available output names.

❍ Host information — In multi-core systems, node outputs form messages that are
transmitted to destination hosts. See Using the Numenta Runtime Engine: Advanced
Topics, page 65.

Links
Each link connects one source node output with one destination node input. Links
project part of a source node’s output vector into the destination node’s input field. In the
simplest case, when the source node has one output and the destination node has one
input, you can specify the link by specifying source and destination node names.
To fully specify a link, you need the name and output name of the source node, and the
name and input name of the destination node. Optionally, you might specify that only a
portion of a particular output will be communicated. This portion must be contiguous,
and can be offset from the beginning.

Link Types
Certain nodes are often linked to certain other nodes in a particular way. For example,
sensor output usually goes to multiple Level 1 nodes, learning nodes might use single
links and fan-ins or fan-outs, and classifier nodes link to effectors using a single link.
You can use link types to efficiently connect the nodes at two levels (instead of linking
each node explicitly to other nodes). Three link policies are defined:

❍ SimpleSensorLink divides the sensor output array evenly across all nodes at the next
level (this link policy works for both 1-D and 2-D arrays).

If you’re developing custom nodes using the plug-in API, you must name inputs
and outputs as part of the node definition. Nodes included with NuPIC have
predefined output names.

 Advanced NuPIC Programming

Node Inputs, Node Outputs and Links | 29

❍ SimpleFanIn divides node output evenly, as shown in Figure 4.

❍ SingleLink connects one node to another node; useful for connecting a classifier
node to an effector.

Figure 4 Common Link Types

See Link Types, page 51 in Getting Started With NuPIC.

Customizing Link Policies

Customizing a link policy allows you, for example, to specify an offset.
You customize the link policy by customizing the link policy, used as the third argument
in the call to Network.link().

myNet.link ("<source_region_name", "<dest_region_name>", <link_policy>)
myNet.link ("<source_node_name", "<dest_node_name>", <link_policy>)

For <link_policy>, you can specify either a link policy by name, or a link policy
constructor.
For example, the SingleLink policy constructor has the following prototypes:

SingleLink("<sourceOutputName>", "<destinationInputName>")
SingleLink("<sourceOutputName>", int <offset>, "<destinationInputName>")
SingleLink("<sourceOutputName>", int <offset>, int <elementCount>,
"<destinationInputName>")

Use NodeHelp for information about each link policy.
For example, to select output elements 3-7 (inclusive) of output dataOut of node sensor,
and send those elements to the default input of node level1, you can call:

net.link("sensor", "level1", SingleLink("data", 3, 5, ""))

10

Level 1 nodes

Level 2 nodes 6 8

2 3 4 5

SimpleFanIn

9

SingleLink

SimpleSensorLink

Advanced NuPIC Programming

30 | Chapter 2 Developing HTM Networks: Advanced Topics

Regions
A region is a collection of nodes that have precisely the same parameters, including the
same phase. The sample network in Figure 4 does not include regions, but most larger
HTM Networks do.
Regions are a useful mechanism for creating your HTM Network because you can create
the most common types of networks with very little code. This includes being able to
specify region to region links and links between a region and a sensor or effector, with
one call using link policies. Regions also handle multi-dimension input connections.
Regions are not a good choice if most of the nodes in the HTM Network have different
parameters. There is no implied communication between the nodes of a region.
You can create 1-D and 2-D regions:

❍ A 1-D region is a simple sequence of nodes.

❍ A 2-D region is a group of nodes that are logically arranged in a 2-D plane. Each node
has the same phase, but there are multiple nodes in both dimensions. For example, a
2-D region can be used for vision applications where you want the nodes to be
arranged in a plane.

Figure 5 1-D Region of Four Nodes (Top) and 2-D Region of 2x3 Nodes (Bottom).

See Creating Regions, page 49 in Getting Started With NuPIC for additional information.
The NetConstruction example illustrates the different kinds of networks you might wish
to create. Most of the examples use regions of spatial and temporal poolers at each level.

1-D array of
4 nodes

3x2 2-D array
of 6 nodes

The Images example uses multi-dimensional regions, as discussed in the corresponding
documentation.

 Advanced NuPIC Programming

Inside a Learning Node: How Learning and Inference Happen | 31

Inside a Learning Node: How Learning and Inference Happen

At runtime, Numenta learning nodes perform learning and inference.

❍ Learning — Nodes perform spatial learning and temporal learning to build a model of
their world. During spatial learning, the node learns frequent spatial patterns in the
input vector. During temporal learning, the node learns temporal groups of frequently
adjacent spatial patterns. See What Nodes Do During Learning, page 33.

❍ Inference — During inference, the node receives inputs and uses the information it
gathered during learning to produce an output for each input.

This section explores the concepts behind learning and inference for the default learning
nodes (SpatialPoolerNode and TemporalPoolerNode) and Zeta1TopNode.
If you’re using the helper functions (TrainBasicNetwork() etc) or RuntimeNetwork,
learning and inference at the different levels happen automatically.

Related Documentation
This section gives only an introduction to the learning process. To fully understand how
Numenta learning nodes perform learning and inference, read the Numenta Node
Algorithms Guide. See the white paper The HTM Learning Algorithms for an in-depth
discussion of how an HTM works.

Learning and Inference During Training
During training, each node needs to perform both learning and inference. This can
happen implicitly or explicitly depending on the API you are using.

1. First, the program enables sensor and bottom-level (Level 1) nodes. The Level 1
nodes are set to learning mode and create a model of their world. All other nodes are
disabled. This setup is held for a number of Level 1 learning iterations until Level 1 is
fully trained. This number must be determined by the HTM developer and usually
requires some experimentation. You specify the number of iterations when calling
RuntimeNetwork.run(), usually in conjunction with the run policy.

2. The program sets Level 1 nodes to inference mode and the next level to learning
mode. That means the output from the computation performed at Level 1 becomes
available to Level 2. Level 2 nodes build a model of their world based on that output.
This setup is used for a number of Level 2 learning iterations until Level 2 is fully
trained.

3. The program sets the Level 2 nodes to inference mode (making their output available)
and the next level to learning mode.

Advanced NuPIC Programming

32 | Chapter 2 Developing HTM Networks: Advanced Topics

4. The program progresses until all nodes have completed learning and have been set to
inference mode. The program can then save the fully trained HTM Network and
reload for testing with the training data or with new data. Because all nodes are in
inference mode at the end of the training run, incoming data can be processed right
away.

For an example, see Running the Network to Perform Learning and Inference, page 36.

Supervised and Unsupervised Learning
When you train your HTM Network, you can submit category information to the
classifier node so classifier nodes can group according to category (supervised learning).
If you don’t include category information (unsupervised learning), the classifier creates
groups based on the characteristics of the input data.

If you’re using RuntimeNetwork, you don’t need to enable and disable modes explicitly. You just
call RuntimeNetwork.run().

 Advanced NuPIC Programming

Inside a Learning Node: How Learning and Inference Happen | 33

What Nodes Do During Learning
This section explores how nodes perform learning. The current learning algorithm,
implemented by SpatialPoolerNode and TemporalPoolerNode, consists of two major
operations:

❍ Learning frequent spatial patterns.

❍ Learning the temporal relations between the learned spatial patterns and forming
temporal groups based on these temporal relations.

When a node is in learning mode, it is receiving inputs, measuring the statistics of the
inputs, and making modifications to its internal structures to represent the statistics of the
inputs. During this stage, the node does not currently produce any output.
Consider nodes 10 and 12 in the three-layer HTM Network shown in Figure 6:

Figure 6 Three-layer HTM Network Example

5. Node 10 receives input data from nodes 6 and 7. Each input is a vector.

6. Each time Node 10 receives data, it performs spatial pooling and makes the spatially
pooled data available to Node 12.

7. Node 12 learns the temporal relationships between the spatial patterns in Node 10.
For each input pattern, Node 12 records the pattern(s) that precede(s) the input
pattern in a transition matrix.

8. Each time Node 10 receives a new input pattern, the two nodes repeat the steps of
storing the pattern in the matrix and performing temporal pooling again.

9. As the last step of learning — after processing all new input — the node partitions the
set of spatial patterns into temporally coherent subgroups. To do so, the node forms
groups so that all the spatial patterns within a group are highly likely to follow each
other in time (and the spatial patterns within different groups are less likely to follow
each other in time). The motivation for this is that spatial patterns that are highly likely
to follow one another in time are likely to be linked to the same cause in the world.

Level 1 nodes

Level 2 nodes

Classifier node

10 11

14

12 13

6 7 8 9

2 3 4 5

Advanced NuPIC Programming

34 | Chapter 2 Developing HTM Networks: Advanced Topics

Structure of a Fully Trained Level

Each level consists of a spatial and a temporal pooler node. Once an HTM level finishes
all stages of learning, it contains the following information in the nodes at each level:

❍ A set of spatial patterns in the spatial pooler.

❍ A temporal transition matrix that stores the first-order temporal relations between the
spatial patterns in the temporal pooler.

❍ A set of temporal groups. Each temporal group is a subset of the set of spatial
patterns in the spatial pooler.

At this point, the level has built a model of part of the world. During inference, the NRE
will use this model to process incoming data.

What Nodes Do During Inference
Learning nodes are trained on a per-level basis. Each level contains sets of spatial pooler
and temporal pooler nodes. Classifier nodes encapsulate both the spatial and the temporal
pooler. This section discusses inference for both learning nodes and classifier nodes.

Learning Nodes

Once a learning node level has been trained, it can be switched to inference mode. During
inference, the level already has a model of the world (stored in the spatial and temporal
pooler nodes). When the level receives an input from its children, it uses its internal
model of the world to create an output to send to its parent(s).
A learning node level creates its output by taking the following steps:

1. The level receives as input a single vector of floating-point numbers, which represents
the concatenation of the output vectors from its children. Each of these child outputs
is a vector containing a distribution over the groups of that child.

2. The input first arrives at the spatial pooler node, which compares this input to all
previously-learned coincidences, and then outputs a distribution over the
coincidences.

3. The distribution over coincidences is sent from the spatial pooler node to the
temporal pooler node. The temporal pooler knows which coincidences belong to
which groups. It outputs a distribution over groups. This vector becomes the output
of the level, and becomes available to the node’s parent at the next level.

Classifier Node

The behavior of the classifier node is very similar to that of the learning node, except for
the last step.

1. The classifier receives a single vector of floating-point numbers as input, which
represents the concatenation of the output vectors from its children. Each of these
child outputs is a vector containing a distribution over the groups of that child.

2. The input first arrives at the spatial pooler inside the classifier, which compares this
input to all previously-learned coincidences, and then outputs a distribution over the
coincidences.

 Advanced NuPIC Programming

Inside a Learning Node: How Learning and Inference Happen | 35

3. The distribution over coincidences is sent from the spatial pooler node to the
temporal pooler node. The temporal pooler knows which coincidences belong to
which groups.

4. Finally the classifier node, it receives outputs a distribution over its learned categories
based on the distribution over groups. This vector becomes the output of the node.
Often, an HTM network is configured so that the output of a top node is sent to an
effector, which then writes this distribution over categories to a file.

If you would like to learn more about the inner workings of the spatial pooler, temporal
pooler, and supervised mapper, see the Numenta Node Algorithms Guide, which describes
these algorithms in detail.

Advanced NuPIC Programming

36 | Chapter 2 Developing HTM Networks: Advanced Topics

Affecting Learning Node Behavior With Node Parameters

When you create a learning node, the node’s parameters affect the node’s behavior.
Note that Numenta Tools check for incompatible combination of parameters when you
write to the HTM Network file.

Parameters in Both Learning Nodes
The following parameters of SpatialPoolerNode and TemporalPoolerNode are frequently
changed to affect node behavior.

❍ clonedNodes — Applies when nodes are in regions. If true all nodes in the region
share state. Default is false

❍ inferenceMode — Allows you to determine whether a node is in inference mode
(True) or not (False). You can also explicitly set a node to inference mode using this
parameter.

❍ learningMode — Allows you to determine whether a node is in learning mode (True)
or not (False). You can also explicitly set a node to learning mode using this
parameter.

Parameters in SpatialPoolerNode
The following SpatialPoolerNode parameters are frequently changed.

❍ maxDistance — Sets the maximum Euclidean distance at which two input vectors are
considered the same during learning. For example, in the figure below, results are in a
2-dimensional space. Point A and B are clearly different points; however, point C is
close to point A. If the value of maxDistance is large enough to have the circle include
point C, then the two are considered two occurrences of the same point. If
maxDistance is small and the circle does not enclose C, then the two are considered
two different points.

This section gives only overview information of the most frequently used parameters of
SpatialPoolerNode and TemporalPoolerNode.
For an in-depth discussion of the concepts behind the algorithms see the Numenta Node
Algorithms Guide. Use NodeHelp for reference information for individual node parameters (see
Getting Node Help, page 24).

 Advanced NuPIC Programming

Affecting Learning Node Behavior With Node Parameters | 37

Figure 7 MaxDistance Example

If a lot of noise is present in the data, consider setting maxDistance to a higher value.

❍ sigma — Sigma to be used in the rbf (radial basis function) in Gaussian inference
mode.

❍ sparsify — If true, the system stores a sparse version of the input vector. Default is
false.

The following parameters are available from the node after learning:

❍ coincidenceCount — Number of learned coincidences as an integer.

❍ coincidenceMatrix — The coincidence matrix as a sparse matrix.

Parameters in TemporalPoolerNode
The following TemporalPoolerNode parameters are frequently changed to affect node
behavior.

❍ requestedGroupCount — Number of groups requested.

❍ transitionMemory — Specifies how many true steps of history to keep in the
temporal pooler to track the time structure of coincidences while learning the time
adjacency matrix. Default is 1.

❍ temporalPoolerAlgorithm (required for TemporalPoolerNode) — A string that selects
the method of computing output probabilities. Note that this parameter only affects
the inference behavior of the node, and has no impact on what is learned.

— When set to maxProp, computes a more peaked score for the group based on the
current input only.

— When set to sumProp, computes a smoother score for the group based on the
current input only.

— When set to tbi, computes a score using Time-Based Inference (TBI) which uses
the current as well as past inputs. See Understanding Time-Based Inference.

The following parameters are available from the node after learning:

❍ coincidenceVectorCounts — Array of integers that shows how often each
coincidence was encountered during learning.

A

B

C
maxDistance

Advanced NuPIC Programming

38 | Chapter 2 Developing HTM Networks: Advanced Topics

❍ groupCount — Number of groups actually generated.

❍ groups — Set of coincidences belonging to each group, returned as a list of
coincidence indices.

❍ TAM — Time adjacency matrix, returned as a sparse matrix.

Understanding Time-Based Inference

When you specify tbi as the value of temporalPoolerAlgorithm of a
TemporalPoolerNode, the system computes a score using Time-Based Inference (TBI),
which takes into account the current input as well as past inputs.
Using time-based inference can help your network produce better inference results in
applications where each successive input is temporally related to the previous one. For
example, if you have an image application and you are feeding in successive frames of a
movie, TBI mode will produce better inference results than either maxProp or sumProp.
The maxProp and sumProp modes are best suited for applications where each successive
inference input is completely independent from the previous one (i.e. flash inference).
In TBI mode, the output is computed based on the current and previous inputs. The
system takes into account the likelihood of each coincidence to follow another (based on
the order of coincidences seen during training) and uses this information to compute the
output probabilities after each input. Consider this example:

❍ The temporal pooler has formed a group consisting of coincidences C1 and C3, and
during training C3 preceded C1 quite often.

❍ During inference, C3 is fed in on time step 1 and C1 on time step 2.
❍ If the node is in TBI inference mode, the output for the group will be higher in time

step 2 than it is in time step 1.
❍ If the node is in sumProp or maxProp inference mode, the output for the group will be

the same in both time steps.

Note also that you can change the temporalPoolerAlgorithm parameter at inference
time. For example, you can take any previously trained network and enable TBI inference
by setting the temporalPoolerAlgorithm to tbi for all level 1 nodes or use flash inference
by setting it to maxProp or sumProp. The network does not have to be trained in TBI mode
in order to use TBI during inference.

The current implementation of TBI mode works well only at level 1 of the network.
This is because the current TBI algorithm does not take into account the different
relative time scales of each level of the network that result from temporal pooling.

 Advanced NuPIC Programming

Working with HTM Network Files | 39

Working with HTM Network Files

You can save your HTM Network at various stages of the development process:

❍ Save your file after you’ve completed configuration. When you save the untrained
HTM Network, you save only its structure. There is as yet no learned node state.
Developers rarely save untrained HTM Networks because recreating the network is
just as fast as loading the file.

❍ Save during or after training. At any point, you can save the current state of your
trained network. This might be after you’ve trained one level, or after the HTM
Network is fully trained. When you save the trained HTM Network, the learned node
state is included and will be available when you later load the file into the NRE.
Developers often save trained networks because training the network can take a long
time.

In most cases, you save the file using the save() method. The method writes the file in
Numenta Network File Format, the only format the NRE can understand.
myNetwork.save("<filename>.xml")

Numenta .xml Files (Numenta Network File Format)
The system saves your file in the HTM Network XML file format.

An HTM Network File (called HTM file in the rest of this document) contains all the
information required to instantiate an HTM Network, initialize its static state to some
known value, and run it. If training scripts have been executed, the learned state of each
node is included in the file. That means you can train an HTM Network on one system,
and run that same network on any other system with the same or greater capabilities.
An HTM file specifies an HTM Network completely, including all the nodes, their types,
the node topology, the node allocation across CPUs, and each node’s state parameters and
learned state.

Manipulating Trained Network Files
In most cases, you load the trained HTM file into the NRE. The NRE uses the
information in the file to create the runtime network hierarchy.

End-to-end support for compression is included with NuPIC. See Compression Support for
HTM Network Files, page 40.

This file format is likely to change in the future. Loading the files using Numenta tools and APIs
instead of editing the XML file is highly recommend.

The HTM file does not include dynamic network state such as the next node to be scheduled,
the current outputs of each node, previously queued outputs, or each node’s internal dynamic
state.

Advanced NuPIC Programming

40 | Chapter 2 Developing HTM Networks: Advanced Topics

You can also load the HTM file directly with NuPIC Tools to allow applications to
manipulate trained HTM Networks. For example, you could copy trained nodes from one
network and insert them into a different network.

For example, to create an HTM Network from an existing file call:
myNetwork = Network("<filename>".xml)

When you load the HTM Network file explicitly, you cannot query individual node
parameters, though you can still use the NRE to query and change the parameters. In
addition, links that were stored as link policies become point to point links, which makes
them less flexible.

Compression Support for HTM Network Files
HTM Network files provide end-to-end compression support. The following methods
automatically compress and decompress appropriately when the specified file extension is
.gz:
Network::Network("myFilename.xml.gz")
Network::save("myFilename.xml.gz")
Network::write("myFilename.dot.gz", "dot")
Session::loadNetwork("myFilename.xml.gz")
Session::loadRemoteNetwork("myFilename.xml.gz")
Session::saveRemoteNetwork("myFilename.xml.gz")

You can read and copy network elements but can’t modify the structure of the network.

Use this feature only if you don’t need a precise match. It is possible that the constructed HTM
Network does not exactly match the untrained network that was originally written to disk as an
XML file.

 Advanced NuPIC Programming

| 41

3 Running HTM Networks With Sessions

Running the HTM Network, page 55 in Getting Started With NuPIC explains how you can
run an HTM Network using either RuntimeNetwork.run() or the RunBasicNetwork()
helper function.
This chapter explains how you can use the Session API to interact with the NRE and
how you can explicitly turn on learning or inference for certain levels. Using sessions is
required only if you want to access some of the advanced features of NuPIC. For
example, using sessions makes sense when running on clusters. This chapter lays the
groundwork to the topics discussed in Using the Numenta Runtime Engine: Advanced
Topics, page 65.
In the last section, the chapter gives supplementary information about
RuntimeNetwork.run().

Topics

❍ Running HTM Networks: Options on page 42

❍ Understanding the Training Process on page 43

❍ Using the Session API to Run Your HTM Network on page 44

❍ What RuntimeNetwork.run() Does, page 51

❍ Accessing Session Information at Runtime on page 53

Advanced NuPIC Programming

42 | Chapter 3 Running HTM Networks With Sessions

Running HTM Networks: Options

You perform training and inference by running the HTM Network. There are a number
of options:

❍ Use the RunBasicNetwork() and RunBasicNetwork() helper functions used by the
Bitworm example.

❍ Create a RuntimeNetwork instance from the Network you created, then call
RuntimeNetwork.run(). See Running the HTM Network on page 55 in Getting Started
With NuPIC for a discussion and examples.

❍ Use a session to run the HTM Network. See Using the Session API to Run Your
HTM Network on page 44.

❍ For large HTM Networks, advanced users can use multi-CPU machines or clusters.
See Using the Numenta Runtime Engine: Advanced Topics on page 65.

After you have defined the structure of the HTM Network, you perform training and
inference. During training, there are two choices:

❍ Supervised learning — If you know which of your data points belong to which
category, you can train the HTM Network using a category file. After training is
complete, the HTM Network has assigned each input data point to a category.

❍ Unsupervised learning — If you don’t know the categories in your problem, the
NRE still groups the data in your training data set. After training, the NRE will then
assign each data point to one of the groups it decided on during training.

After the HTM Network has been trained, you can submit the trained network and new
data to the NRE for inference.

 Advanced NuPIC Programming

Understanding the Training Process | 43

Understanding the Training Process

During training, the nodes in the HTM Network perform learning and inference. This
section gives an overview of the process, which is illustrated in the bitworm_session
example. In contrast to Getting Started With NuPIC, which uses RuntimeNetwork, the focus
of this section is on sessions.
From the NRE’s point of view, the training process consists of these steps:

1. The user loads an untrained HTM Network file. The file contains the classes, links,
and other information that the NRE needs to load the network.

2. The user initializes the sensor with input data from a file. In many cases, the user also
initializes the category input data.

3. The script that runs the HTM calls the Session constructor, then calls
Session.start(). In response to the call, the NRE creates a session and creates the
HTM Network, the specifies node instances, and the links.

4. The session feeds the sensor data file to the HTM Network.

5. The NRE trains the HTM Network, one level at a time:

a. Trains the bottom level using the input data.

b. Performs inference on the bottom level, sends the resulting groups to the next
level and performs training on that level.

c. Performs inference on Level 2 and performs training on Level 3, and so on.

6. If a category file was submitted, the classifier node uses the category information
during learning. Otherwise, the classifier node groups the data based on the input data
and the parameter settings.

Advanced NuPIC Programming

44 | Chapter 3 Running HTM Networks With Sessions

Using the Session API to Run Your HTM Network

This section explains how you can use the Session API to run your HTM Network on a
single CPU, using fragments from the bitworm_session example.
Starting the session and running the HTM Network are two separate tasks. You must
perform all session startup tasks before you can run the network.

Starting the Session
Starting the session includes creating the Session object, adding the required files to the
Session, and calling the start() method.

To start the session:

1. Import the session-related classes:
from nupic.network import Session, SessionConfiguration

2. Create a session instance:
mySession = Session("dir/subdir/mysession")

This call returns a Session object; however, it does not start the NRE yet. Upon
creating the session, the system creates a directory called
mySession.<num>.local_bundle where it stores files related to the runtime engine.
For the example above, a directory called dir/subdir/mysession.1.local_bundle is
created. See Sessions and Session Bundles on page 49 for background information.

3. Add the files the session needs, such as training data and category files, using the
addFiles method, which has the following prototype:
mySession.addFiles (<origin>,<destination>)

The addFiles() method copies the file(s) specified by <origin> to <destination>. If
no destination is specified, it copies the files into the main session bundle directory,
and preserves the original file names. Here’s a code fragment from the Bitworm
example:
session.addFiles("training_data.txt")
session.addFiles("train_catsensor.txt")

4. Start the session.
mySession.start()

This command launches the runtime engine with the default configuration inside the
bundle. The bundle’s top level is now considered the working directory. The log files

Before you can run the HTM Network, you must configure its structure. See Constructing an
HTM Network on page 41 in Getting Started With NuPIC for information.

You can customize the session by setting SessionConfiguration parameters
before you actually start the session. See SessionConfiguration Object Methods
on page 81.

 Advanced NuPIC Programming

Using the Session API to Run Your HTM Network | 45

are placed in a subdirectory called session_log. See Table 3:, Session log files, on
page 55.

There is a log file for each process. The Supervisor and each NP have a separate log
file. These files are named logS0.txt, logN1.txt, and so on. A file called stdout.txt
contains the combined information from all processes.

The call to start() places a single script file called launch.py into the bundle’s
session_resources subdirectory. This script is complex, and is kept in the bundle to
facilitate troubleshooting.

Running the HTM Network
This section first gives an overview of low-level details of running an HTM Network. It
then illustrates how the bitworm_session example actually runs the network.

Low-level Session Interaction

A program that does not want to take advantage of the higher-level APIs can run the
HTM Network as follows:

1. Load the HTM Network file:
mySession.loadNetwork(<filename>)

Here, <filename> refers to an HTM Network on your local file system that you’ve
already created. See Constructing an HTM Network on page 41 in Getting Started With
NuPIC.

If you’d like to avoid copying the network into the session bundle, you can use the
optional copyHint parameter to loadNetwork(), which defaults to true.
mySession.loadNetwork(self, path="net.xml", copyHint)

If you’re running your HTM Network remotely, the network must be copied.

2. Interact with the nodes in the HTM Network. You can call the following methods:

Session.execute
(node_regx, command)

Call Session.execute() to send an execute command directly to a set of nodes. For
example:
session.execute('level1', ('setInference', '1'))

session.execute('level1', 'resetHistory')

For help for all Supervisor commands, type the following at the Python command line:
from nupic.network import Session
mySession = Session ('test')
mySession.start()
mySession.sendRequest('help')

To get help on a specific command, call mySession.sendRequest('help <cmdName>').

Advanced NuPIC Programming

46 | Chapter 3 Running HTM Networks With Sessions

3. After computation is complete, you can save the trained HTM Network to a file.
Session.saveRemoteNetwork(<filename>)

This method tells the NRE to save the current state of the network to an HTM
Network file. The file is stored inside the bundle. Specify a filename that is relative to
the bundle directory.

4. Call stop() to stop the NRE.
Session.stop()

5. Copy the HTM Network file to a location outside the bundle.
Session.getLocalBundleFiles(<origin>, <destination>)

Extracts the specified file(s) from the local bundle and puts it in the specified
directory (local directory by default). Identical to the Unix cp command.

6. If you wish, you can tell the session to delete the local bundle upon completion:
Session.setCleanupLocal()

By default, the session does not clean up the bundle directory, so that users can
examine its contents for debugging purposes. But if you plan to copy any files you
need using Session.getLocalBundleFiles(), you can use
Session.setCleanupLocal() to tell the session to remove the bundle when it is done.
The bundle is removed only when the session object is deleted (which occurs if your
script finishes, or the Session instance goes out of scope, or you delete the instance
manually). The bundle is not deleted immediately upon calling
Session.setCleanupLocal(), nor upon calling Session.stop().

Performing Learning in the Bitworm Example

In the Bitworm example, the training script TrainNetwork.py performs the following
tasks:

1. Disables all nodes.
session.disableNodes()

Session.disableNodes
(node_regx)
Session.enableNodes
(node_regx)

When the NRE runs, it executes each enabled node’s compute() method. By default, all
nodes are enabled. The disableNodes()/enableNodes() methods disable or re-enable
the specified nodes. node_regx is a regular expression that selects nodes.
You can disable/enable individual nodes within levels. For example, during training, the
Pictures example program enables one node at a level and disables the rest for faster
performance. Usually, you enable individual nodes by first disabling all nodes, and then
individually re-enabling desired nodes, but that approach is not required.

Session.compute
(num_iter, wait)

Cycles through enabled nodes the specified number of times. Does not return until all
compute() methods finish.
The wait parameter is advanced. If set to True (the default), the call does not return until all
computation completes. If False, the call returns immediately, even though computation
has only been started. Changing this parameter is not recommended.

See How to Use NuPIC in Complex Configurations on page 76 for information on running in a
multiprocessing environment.

 Advanced NuPIC Programming

Using the Session API to Run Your HTM Network | 47

By default, all nodes are enabled after the HTM Network has been loaded. Bitworm
then enables nodes selectively.

2. Enables learning for the Sensor and the Level1 nodes.
session.enableNodes("Sensor")
session.enableNodes("Level1")

3. Runs the compute() method of all enabled nodes, once for every input vector.
session.compute(numVectors)

4. Disables learning and enables inference for the Level1 node.
session.execute('Level1', ['setLearning', '0'])
session.execute('Level1', ['setInference', '1'])

Performing Learning and Inference in the Bitworm Example

As the second part of training, you turn on inference for Level 1 and learning for Level 2.
While Level 1 is in inference mode, it passes the information it deduced to the next level.
Level 2 can then perform learning on those outputs.

The program implements this as follows:

1. Returns the sensor and category sensor to the beginning of the training data.
session.execute("Sensor", ("seek", "0"))
session.execute('CategorySensor', ("seek", "0"))

2. Enables the Level 2 node (the Level 1 node is already enabled). With inference
enabled earlier for Level 1, turn on learning for Level 2.
session.enableNodes("Level2")
session.execute('Level2', ['setLearning', '1'])

3. Runs the training cycles for Level 2 and finishes learning. Because the Level 2 node in
Bitworm is a Zeta1TopNode, it performs classification as part of learning, that is, it
attempts to map the input from the previous level to the categories in the category
file.
session.compute(numVectors)

4. Turns off learning and turns on inference for the Level 2 node.
session.execute('Level2', ['setLearning', '0'])

Using Session.execute() to Access Nodes or Execute Commands at Runtime

You can retrieve and set node parameters at runtime using Session.execute(), for
example:
mySession.execute('myNode', ['setParameter', 'transitionMemory', '4'])
mySession.execute('myNode',['getParameter', 'coincidenceCount'])

Switching between learning and inference mode for the different levels is the appropriate way to
train your network. Each Level has to complete learning before it can go into inference mode
and hand off its data to the next level. Each level is trained once.
Higher-level tools (RuntimeNetwork, RunBasicNetwork()) enable and disable nodes
automatically. The Session API requires you enable and disable explicitly.

Advanced NuPIC Programming

48 | Chapter 3 Running HTM Networks With Sessions

You can also execute certain commands, for example:
mySession.execute(’myNode’, 'pruneCoincidences')

Use nodeHelp for the individual nodes for detailed information.

 Advanced NuPIC Programming

Sessions and Session Bundles | 49

Sessions and Session Bundles

A typical session makes use of several files. To organize these files for easy transfer,
analysis, and cleanup, the session manages a session bundle: a single file system directory
created by the Session instance. The bundle is created immediately on session
instantiation. Session methods allow you to add files to the bundle, extract files from the
bundle, copy the bundle to and from a remote host, and clean up the bundle when it is no
longer needed.
The Session instance creates a local bundle. The bundle holds all files associated with a
single conceptual NRE session. The bundle includes configuration scripts, working inputs
and outputs, and log files on the local file system. You must specify the location of the
bundle on the file system when you create the Session instance using the constructor.
Because the runtime engine can be launched on a remote host, the local bundle might not
be accessible to the remote NRE processes. Instead, the session instance copies the local
bundle to the remote host with a file synchronization utility (rsync on Unix-like systems).
This works as long as the local machine has secure-shell (ssh) access to the remote host.
The following screen shot shows the bundle layout for a typical session:

Figure 8 Session Bundle Example

The bundle directory functions as a working directory for the NRE. All relative paths
used by the NRE refer to paths starting in the bundle directory. Files written to or read
from relative paths refer to files stored in this directory. This includes paths used to load
and save network and data files.
By default, the bundle directory is populated with a number of files and directories when
you create the session:

❍ The session_resources subdirectory holds configuration files and other immutable
files that the NRE needs, but that do not change during the lifetime of the session.
The launch script (launch.py) is saved into this directory.

When there is a remote bundle, this directory does not need to be synchronized after
startup because the NRE does not modify files in the session_resources directory.

❍ The session_log subdirectory holds log outputs from the NRE processes. The log
subdirectory is always synchronized in the opposite direction, from the remote bundle
to the local bundle. See Table 3:, Session log files, on page 55.

When there is a remote bundle, the NRE always copies this directory back to the local
bundle upon NRE shutdown.

Advanced NuPIC Programming

50 | Chapter 3 Running HTM Networks With Sessions

Bundles and Remote Hosts

If the NRE is launched on a remote host, the main bundle directory is synchronized just
before launch from the local bundle to the remote bundle, in case input files are stored in
the local bundle. At any time during the session lifetime, you can add new files to the local
bundle’s main directory and synchronize to the remote side using the Session API.
Similarly, if periodic updates of the remote outputs are needed locally, you can explicitly
synchronize the local bundle with the remote bundle. When the remote NRE is shut
down, the main directory and the log directory are synchronized back from the remote
bundle to the local bundle. In this way, the local application can access all NRE output
files.

Loading Networks Without Copying them into Bundles

You can load an HTM Network without copying it into a bundle by using the copyHint
flag to Session.loadNetwork:
mySession.loadNetwork(self, path="net.xml", copyHint=True)

When copyHint is true, (the default), the HTM Network file is copied into the bundle.
When copyHint is false, the network is not copied into the bundle. This parameter is only
a hint. If there is a remote bundle, the HTM Network File must be copied regardless of
the value of the flag.

 Advanced NuPIC Programming

What RuntimeNetwork.run() Does | 51

What RuntimeNetwork.run() Does

While all other sections in this chapter dealt with sessions, this section gives some
advanced information on RuntimeNetwork, which is discussed in Running the HTM
Network, page 55 in Getting Started With NuPIC.
When you call RuntimeNetwork.run(), the NRE runs computation on a selected subset
of the network for the specified number of iterations.

Simple Scenarios

In the simple case the user specifies an iteration number and optional selection or
exclusion arguments. The names specified in the selection and exclusion arguments can
refer to individual nodes or regions. The following table shows some examples:

Scenarios With Run Policies

NuPIC supports a wide variety of node types and learning algorithms. Different learning
nodes might require complex run schemes during training. To support this, the run
method can accept a RunPolicy.
The following table shows some examples with Zeta1Node an older node that is still
supported:

Example Description
myNetwork.run(1000) Run the entire network for 1000

iterations

myNetwork.run(1000, ["sensor", "level1"]) Run the sensor node and the region
level1 for 1000 iterations

myNetwork.getElement("sensor").run(1) Run the sensor node for one iteration

myNetwork.run(1, exclusion=["effector"]) Run the entire network, except for
effector, for one iteration

myNetwork.run(10, ["sensor", "level1",
"level2[0]"], exclusion=["level1[1,0]""])

Run sensor, the region level1 with
the exception of node level1[1,0],
and the node level2[0], for ten
iterations.

Example Description
myNetwork.run(TrainPhase("level2", 1000),

selection = ["sensor",
"level1", "level2"])

Train the level2 region for 1000
iterations using the default algorithm.
Nodes with names "sensor" and all
nodes in the level1 and level2
regions will be selected. Learning will
be turned on for all nodes in level2.

Advanced NuPIC Programming

52 | Chapter 3 Running HTM Networks With Sessions

RuntimeNetwork.run() Parameters

You can call RuntimeNetwork.run() with the following parameters:

myNetwork.run(TrainPhase("topLevel",
1000), exclusion=["effector"])

Train the top level for 1000 iterations
using the default algorithm. All nodes
in the network will be selected, with the
exception of effector.

myNetwork.run(UntilException()) Run all nodes in the network
continuously until an exception occurs.
Common run policies include
TrainPhase, SimpleCompute, and
UntilException. See the Python
documentation for these policies for
more details.

Parameter Type Description
runPolicy integer or

RunPolicy
If an integer, specifies the number of iterations to run on the
selected nodes. If a run policy, hands off the
RuntimeElement, its attached Session, and the selection
information to the run policy, which determines how many
iterations to run and what nodes to enable.

selection list of strings
(optional)

Relative names of the elements to enable. If None, the entire
NetworkElement will be enabled.

exclusion list of strings
(optional)

Relative names of the elements to disable. Only necessary to
disable elements that would be enabled through the current
NetworkElement or the selection parameter.

Example Description

 Advanced NuPIC Programming

Accessing Session Information at Runtime | 53

Accessing Session Information at Runtime

You can interact with sessions and examine node content at runtime. You can also later
access the logs generated by the NRE.

Interacting with Sessions
You can interact with sessions as follows:

❍ Retrieve individual outputs, using the nodeOPrint Supervisor command. You can call
Supervisor commands using the Session.sendRequest() method, for example:
mySession.sendRequest('nodeOPrint <nodeName>')

For help for all Supervisor commands, type the following at the Python command
line:
from nupic.network import Session
mySession = Session ('test')
mySession.start()
mySession.sendRequest('help')

To get help on a specific Supervisor command, call mySession.sendRequest('help
<cmdName>').

❍ Call Session.execute() to send a command directly to a set of nodes. For example:
mySession.execute('level1', ('setInference', '1'))

mySession.execute('level1', 'resetHistory')

You can call mySession.execute('<nodeName>', 'getCoincidences') to retrieve the
coincidence matrix from the node.

❍ Instead of issuing session commands repeatedly, you can iterate through them as
follows:
for k in range (0, numIterations):

compute(1)
self.session.sendRequest ('nodeOPrint sensor')
self.session.sendRequest ('nodeOPrint level1\[0,0]')

Then review the session_log/stdout.txt file to verify that you are getting reasonable
results.

❍ Run mySession.compute(1) to perform a single computation on all nodes, then
retrieve information from a node to see how it changed during that one computation.

Examining Node Content
You can check the number of coincidences and groups at each level and after each chunk
of training data.
self.session.execute ('level1\[0,0]', 'getNGroups')
self.session.execute ('level1\[0,0]', 'getNCoincidences')

Check the ratio of coincidences and groups at each level.

Advanced NuPIC Programming

54 | Chapter 3 Running HTM Networks With Sessions

Using Visualizer, plot coincidences at each level and plot groups (see Using HTM
Network Visualizer, page 74 in Getting Started With NuPIC). In an HTM that works well,
you should expect a balanced histogram of group sizes. You usually don’t want one or two
huge groups and dozens of twin or singleton groups.

 Advanced NuPIC Programming

Look At Output Information | 55

Look At Output Information

This section explores a few things you can check after you have run your application.

Examining Scripting/Session Commands
When you’re not sure what’s happening, you can look at the log files and any print
statements you included in your program. For example, you can check the
session_resources/launch.py script and the corresponding session_log/launch.txt
file to see whether startup proceeded as expected.
To see whether things are scheduled appropriately, see the session bundle’s /log directory
for Supervisor commands.
Check whether each level is being trained appropriately. Each level should go though
learning, then inference. If you’re using RuntimeNetwork, these steps are followed
automatically. If you’re performing training and inference explicitly, see the
bitworm_session example’s TrainNetwork script.
Examine numbers at each level to see whether a level or a node is not getting scheduled.

Log Files

Each time you use the NRE, information is added to the logs. This information can be
useful, for example, if you don’t get any results.

The logs are especially useful to plug-in developers. Because plug-in developers create
their own nodes, they might experience NRE crashes if errors exist in their nodes.

After a session has stopped, the following log files are available in the local session bundle
directory (session_log). Currently, the stdout.txt log is the most useful log file. The
rrlog.txt log is also useful, it records node requests and responses.

Table 3: Session log files

File Description
rrlog.txt Transcript of all requests sent to the Supervisor and all responses received back. Also useful for

troubleshooting and for confirming your HTM Network is operating as expected.

launch.txt Transcript of the commands issued to launch the Supervisor.

stdout.txt Integrated “standard” output from the launcher, MPI, the Supervisor and all Node Processors.
This file is especially useful if you are developing your own sensor, effector, or learning node
plugin.

log.S0.txt Log file generated by the Supervisor while it was running.

log.N1.txt Log files generated by the first node processor while it was running.

log.N2.txt, ... Log file generated by additional node processors if they existed.

Advanced NuPIC Programming

56 | Chapter 3 Running HTM Networks With Sessions

The launch.py File
The call to Session.start() places a single script file called launch.py into the bundle’s
session_resources subdirectory. This script is complex, and is kept in the bundle to
facilitate troubleshooting. The script might have useful information if your session does
not seem to start at all, or if it starts but does not seem to be processing the input.
If you’re using RuntimeNetwork, the session created by RuntimeNetwork creates the script.

 Advanced NuPIC Programming

| 57

4 Scheduling Node Processing

This chapter first explains how a scheduler manages the flow of data through an HTM
Network. The second section discusses using the basic scheduler or the pipeline scheduler
with multiple NPs.
Using the Numenta Runtime Engine: Advanced Topics, page 65 explains how to use
multiple NPs.

Topics

❍ Understanding Scheduling, page 58

❍ Different Schedulers with Multiple NPs on page 59

❍ Profiling and Load Balancing on page 63

Advanced NuPIC Programming

58 | Chapter 4 Scheduling Node Processing

Understanding Scheduling

A scheduler manages the flow of data through an HTM Network (see Inside a Learning
Node: How Learning and Inference Happen on page 31). The scheduler, which is part of
the NRE, determines the order in which the nodes’ compute() methods are called. This
section discusses how schedulers control execution and introduces the available
schedulers.

Scheduler Overview
In a hierarchical HTM Network, there are data update dependencies. For example,
mid-level nodes might require data calculated by bottom-level nodes. The NRE scheduler

❍ Is responsible for coordinating node computations so that data dependencies are
satisfied.

❍ Is responsible for coordinating computations across NPs when there is more than one
NP.

❍ Keeps track of nodes that have been explicitly enabled or disabled, and schedules only
enabled nodes.

When you schedule a complete scheduling sweep through a simple HTM Network, the
compute() method on each enabled node is invoked once.

Supported Schedulers

NuPIC includes two schedulers, the basic scheduler and the pipeline scheduler.

❍ Basic Scheduler — The basic scheduler schedules computation in order of a
non-negative integer phase assigned to each node. The node creation methods assign
a default phase (see Constructing an HTM Network on page 41 in Advanced NuPIC
Programming). In a simple HTM, the sensor is typically assigned to phase 0 (zero),
bottom-level nodes are assigned to phase 1, and so on. Nodes in the same phase
might be computed in any order.

The basic scheduler can schedule nodes on one or more node processors, and ensures
that the computation result is the same as if all nodes were on a single NP.

If you want to assign a non-default phase, you can use the CreateNode() API.

❍ Pipeline Scheduler — If you’re running your HTM Network on more than one NP,
you can take advantage of the pipeline scheduler. Using the pipeline scheduler makes
your HTM application run faster in a multi-CPU setting but requires some additional
code. See Using the Pipeline Scheduler With More Than One NP on page 61.

 Advanced NuPIC Programming

Different Schedulers with Multiple NPs | 59

Different Schedulers with Multiple NPs

This section discusses how different schedulers interact with multiple NPs. Using
multiple NPs is discussed in detail in Using the Numenta Runtime Engine: Advanced
Topics, page 65.

Using the Basic Scheduler with Multiple NPs
By default, the basic scheduler is enabled. This section explains how to use the basic
scheduler when there is more than one NP. For an introduction to scheduling, see
Understanding Scheduling on page 58.
The phase assigned to each node determines the order in which the basic scheduler
updates the nodes. Nodes in phase N+1 are always computed after nodes in phase N.
With the basic scheduler, two nodes in the same phase can be computed in parallel if they
are on different NPs, but nodes in different phases cannot be computed in parallel.

Figure 9 Example Network for Basic Scheduler, Multiple NPs

In the example in Figure 9, assume that phases have been assigned as follows:

❍ sensor = phase 0

❍ level 1 nodes = phase 1 and 2

In most cases, the potential performance improvement of using multiple processors is much
greater with the pipeline scheduler than with the basic scheduler.

Sensor

15

Input

Level 2 S nodes

Classifier node

Effector

Output

14

10 11

Phase 0

Phase 1

Phase 2

Phase 3

Phase 412 13

2 3 4 5

6 7 8 9

1

Phase 5

Phase 6

Level 1 S nodes

Level 1 T nodes

Level 2 T nodes

Advanced NuPIC Programming

60 | Chapter 4 Scheduling Node Processing

❍ level 2 nodes = phase 3 and 4

❍ classifier node = phase 5

❍ effector node = phase 6
The phase assignments capture the data dependencies that are implicit in the network.
For example, node 10, in phase 3, is not computed until new data are available from its
upstream nodes 5 and 6, in phase 2.

Suppose you have two NPs and an HTM Network with phases 0-6 as shown in Figure 9
on page 59. Nodes 1, 2, 3, 6, 7, 10, 12, 15 are on NP 0, and nodes 4, 5, 8, 9, 11, 13, 14 are
on NP 1. Then the computation proceeds as follows:

One might hope for a performance improvement of nearly N when using N NPs.
However, for this small HTM Network, one NP is idle in three out of seven phases, so
the potential performance improvement is much less than N.
Several factors limit the actual performance improvement you can get using multiple NPs
with the basic scheduler. These factors include:

❍ Load balance at each phase — Load balance is a measure of the relative computational
load on two or more processors. The more nodes the better. Larger HTM Networks
are better able to utilize multiple processors because they can be better load balanced.

❍ Relative amount of computation between phases.

❍ Synchronization and communication overhead — Whenever there is more than one
NP, the NRE must synchronize and exchange node outputs after every phase.
Communication between NPs is efficient, but can hurt performance if the amount of
computation is not significantly larger than the communication overhead. For small
HTM Networks with relatively simple computations (including most of the Numenta

Advanced note: You might sometimes need to propagate signals back down the hierarchy. You
can do so by assigning more than one phase to some nodes. For example, you might assign
sensor = phase 0; level 1S = phases 1, 11; level1T = 2, 10, and so on. This assignment results in
computation of sensor/level1/level2/level3.../classifier/...level3/level2/level1. You can specify
multiple phases as a space-separated list of integers in a node’s phase property.

Phase NP0 NP1
0 Compute 1 Idle

1 Compute 2, 3 Compute 4, 5

2 Compute 6,7 Compute 8,9

3 Compute 10 Compute 11

5 Compute 12 Compute 13

6 Idle Compute 14

7 Compute 15 Idle

 Advanced NuPIC Programming

Different Schedulers with Multiple NPs | 61

example programs) the amount of computation is so small that there is little benefit,
or even a negative impact, from parallelization.

Fatter nodes (nodes with more computation) reduce communication overhead,
resulting in improved performance.

For the Learning Nodes distributed with NuPIC, the amount of computation grows
with the number of coincidences learned by a node, so fully trained nodes are fatter
than untrained nodes.

Using the Pipeline Scheduler With More Than One NP
The pipeline scheduler is an advanced scheduler that makes load balancing easier and
enables greater parallelism. Other than computation time, an HTM Network using the
pipeline scheduler performs identically to the basic scheduler.

Pipeline Scheduler Example

Consider a simple 3-level network with nodes A, B, C. A is a sensor, B is a single Level 1
spatial pooler node, and C is a single Level 1 temporal pooler node.
\

At each iteration, the sensor computes a single image. The B computation uses the output
of A, and the C computation uses the output of B. With the basic scheduler, this
computation must be performed serially. The pipeline scheduler allows this computation
to be parallelized through a technique known as pipelining. Consider the following series
of computations:

In steps 3-5, all nodes can be computed in parallel. Steps 1 and 2 are known as “pipeline
fill” and steps 6 and 7 are known as “pipeline drain”.

A

B

C

A B C
1 Computes, produces image 1 Idle Idle

2 Produces image 2. Processes image 1. Idle

3 Produces image 3. Processes image 2. Processes B’s output from image 1

4 Produces image 4. Processes image 3. Processes B’s output from image 2

5 Produces image 5. Processes image 4. Processes B’s output from image 3

6 Idle Processes image 5. Processes B’s output from image 4

7 Idle Idle Processes B’s output from image 5

Advanced NuPIC Programming

62 | Chapter 4 Scheduling Node Processing

To make pipelining possible, the pipeline scheduler uses a technique called double
buffering. In the example above, when B is processing image 2, A might overwrite the
input with image 3. To avoid overwrites, each node has two outputs called x and y. During
one iteration, nodes write to the x buffer and read from the y buffer. During the next
iteration, nodes write to the y buffer and read from the x buffer.
The additional complexity of the pipeline scheduler is hidden from you: NuPIC
automatically fills and drains the pipeline.

Pipeline Scheduler Considerations

When using the pipeline scheduler, be sure to consider these points:

❍ The pipeline scheduler double-buffers node outputs and pipelines computation so
that all nodes can be computed concurrently, making the pipeline scheduler ideal for
multiprocessing.

❍ The pipeline scheduler can be used with feed-forward networks.

❍ The available concurrency with the pipeline scheduler is the total number of nodes.

❍ The pipeline scheduler requires less inter-process synchronization per iteration than
the basic scheduler.

❍ Pipeline throughput is limited by the slowest NP in the pipeline. One NP might be
slower than the others because of load imbalance.

Most HTM Networks behave identically with the basic and the pipeline schedulers.
Networks with level-skipping connections might behave differently. In a level-skipping
connection, the output from a low-level node skips levels to go to a high-level node. The
Pictures example avoids level skipping by using two pass-through nodes that copy their
input to their output. In most cases, using pass-through nodes is recommended.

Figure 10 Level-skipping HTM Network (Left) and HTM Network Using Pass-through Nodes (Right).

1Sensor

9

Input

Level 1
nodes

Level 2
nodes

Classifier
node

Effector

2 3 4 5

10 11

8

6 7 8 9

10 11

1Sensor

9

Input

Level 1
nodes

Level 2
nodes

Classifier
node

Effector

2 3 4 5

10 11

8

6 7 8 9

10 11

P

P

P

P

 Advanced NuPIC Programming

Profiling and Load Balancing | 63

Profiling and Load Balancing

Load balancing appropriate for the basic scheduler is fairly straightforward. Assuming
each node at a given level needs to do approximately the same amount of computation,
dividing the nodes at a given level among NPs is a reasonable load-balancing strategy.
For the Pipeline scheduler, it might not be evident how much time is spent in a level 1
node vs. a level 2 node vs. a level 3 node. The NRE provides a simple way to profile your
HTM Network for basic load balancing.

To profile your HTM Network:

1. Invoke mySession.sendRequest("profile -enableProfiling") to turn on profiling.

2. Run your network for some number of iterations.

3. Invoke mySession.sendRequest("profile -disableProfiling") to turn off
profiling.

4. Invoke mySession.sendRequest("profile -report") to generate a report of the
cumulative time spent in the compute() method of each node.

The images framework also includes some profiling. See the images documentation for
more information.

NuPIC currently does not include tools for automatically rebalancing a network.

Advanced NuPIC Programming

64 | Chapter 4 Scheduling Node Processing

 Advanced NuPIC Programming

| 65

5 Using the Numenta Runtime Engine: Advanced Topics

This chapter discusses using the NRE in advanced configurations: remotely, in
multiprocessing mode, and on a cluster.

Topics

❍ Introduction and Terminology on page 66

❍ NRE Process Structure with Multiple NPs on page 67

❍ Hardware Configurations on page 68

❍ Running in Parallel: Experiment Mode on page 70

❍ Running in Parallel: Large Problem Mode on page 71

❍ Setting up a Cluster to Run NuPIC on page 73

❍ How to Use NuPIC in Complex Configurations on page 76

❍ SessionConfiguration Object Methods on page 81

Advanced NuPIC Programming

66 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

Introduction and Terminology

Many computers manufactured today have more than one processor. Some systems have
more than one single-core processor; others have one or more multi-core processors.
Clusters of computers extend the potential size of a system to tens of thousands of
processors. The NRE can use more than one processor effectively, and can take
advantage of almost any type of multi-processor system, from a single dual-core chip to a
large cluster.

Terminology
This chapter uses the following terms:

❍ CPU — A CPU is a single-processor core. A dual-core processor has two CPUs, two
single-core processors are two CPUs, and a cluster of five systems, each with two
dual-core CPUs, has 20 CPUs.

❍ Process — A process is an operating system process on Mac OS, Linux, or Microsoft
Windows. The NRE does not use threads, so speedup from parallel execution is
always achieved through the use of multiple processes.

❍ Run in parallel — The term "run in parallel" means "execute concurrently on more
than one CPU" with the goal of reducing overall execution time.

❍ Experiment mode and large problem mode — There are two general classes of
parallel operation with NuPIC. Running multiple HTMs concurrently (experiment
mode) and running a single HTM (large problem mode).

Singe-NP Process and Multiple NPs
The NRE can run in SP-NuPIC or MP-NuPIC mode.

❍ SP-NuPIC (single-process) — The default and most common use of the NRE is to
have a single NP. For that case, computations are performed serially, and additional
CPUs do not improve performance. When there is a single NP, everything runs inside
a single operating system process. Python tools, the supervisor, and node processor
are contained within this process.

This mode of running NuPIC is called SP-NuPIC. Most of the examples run in
SP-NuPIC mode.

❍ MP-NuPIC (multiple processes) — Running with more than one NP makes sense if
you want to take advantage of more than one CPU, or if you want to run remotely.
The focus of this chapter is MP-NuPIC.

Parallel computing with the NRE is an advanced topic. While it is easy to turn on parallelism in
the NRE, you are unlikely to see better performance unless you understand how multiprocessing
works, have an HTM Network that is suitable for multiprocessing, and take into account the
factors discussed in this and the previous chapter.

 Advanced NuPIC Programming

NRE Process Structure with Multiple NPs | 67

NRE Process Structure with Multiple NPs

To take advantage of more than one CPU, you must run with more than one NP. NuPIC
automatically starts several operating system processes when you request more than one
NP. This mode of running NuPIC is called MP-NuPIC.
The details presented here are specific to Unix-like (OS X, Linux) systems. On Microsoft
Windows, some of the details are different.
When you use the NRE with two NPs (e.g. by running the images example on multiple
NPs) and display the processes, for example, using the ps command, you see the
following processes.

Of these, the NP processes do the main computational work. None of the other
processes are CPU intensive. In some cases the Supervisor might use a large fraction of a
CPU, but it gives priority to any other process that needs to run, so that the Supervisor
does not significantly impact performance in most cases.
The Supervisor and NPs communicate with each other using the Message Passing
Interface (MPI) API. On Unix-like systems, Numenta uses the Open MPI
implementation of MPI. See http://www.open-mpi.org for more information. Open
MPI, which is bundled with NuPIC, provides high-performance inter-processor
communication. The Open MPI capability to use high-performance cluster interconnects
such as InfiniBand and Myrinet is not yet enabled in Numenta software.
The focus of the rest of this chapter is on the Supervisor and NPs — the other processes
are not usually relevant to NuPIC users.

Table 4: NRE Processes

Process Description
The Python program that controls
the NRE session.

Three processes named
numenta_runtime

One Supervisor process and two NP process.

launcher process Numenta process responsible for starting the NRE.

orterun and orted processes Processes associated with the underlying process
management and inter-process communication interface
provided by Open MPI (see below).

You can force NuPIC to run in MP-NuPIC mode even if you’re using just one NP by
calling:
SessionConfiguration.setMultiProcessMode()

Advanced NuPIC Programming

68 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

Hardware Configurations

This section describes different hardware configurations and considers multiprocessing
issues in context.

Single-CPU Machine

In the simplest case, the NRE runs on a single-CPU machine. There are two ways of
running the NRE in that case:
❍ SP-NuPIC mode — The Supervisor, one NP, and the control program all run on the

same CPU in a single process. This is the default mode.

❍ MP-NuPIC mode — If you request more than one NP, the NRE automatically runs
in MP-NuPIC mode. In that case, you see the Supervisor process, the two NP
processes, and the other processes discussed in NRE Process Structure with Multiple
NPs on page 67.

While it is possible to run more than one NP on a single CPU, performance suffers
because the CPU has to be shared between the NPs. Nevertheless, multiple NP
instances might be useful during prototyping.

Multi-CPU Machine

You should have only one NP per CPU. For example, on a system with a dual-core chip,
you could invoke the NRE with two NPs to run one HTM Network. On the same
system, you could invoke two instances of the NRE, each with one NP, to run two HTM
Networks. In both cases the Supervisor and Tools instances do not consume significant
CPU resources and HTM Network computation can efficiently use the available CPUs.
The performance you can obtain with multiple CPUs is limited by the load balancing and
other issues discussed in Using the Basic Scheduler with Multiple NPs on page 59.
Performance might also be limited by hardware and operating system constraints.

❍ Processes running on different CPUs might compete for limited memory system
resources.

❍ The operating system might move a process from one CPU to another, losing cached
data and (on some architectures) increasing memory latency for the process to access
its memory.

Host 1 Host 1

One Supervisor, one NP in one process (SP-NuPIC) On Supervisor process, two NP processes (MP-NuPIC)

 Advanced NuPIC Programming

Hardware Configurations | 69

A complete discussion is beyond the scope of this guide.
The Supervisor processes, while using limited CPU resources, still use some resources,
and the amount of resources used increases with the number of Supervisor processes on
a system.

Figure 11 Different Configurations on Multi-CPU Machines

Cluster (Unix-like Systems Only)
NuPIC supports a cluster of networked hosts. The main differences between using a
cluster and using a multi-CPU machine are:

❍ You have to explicitly specify the names of the hosts that you want to use in the
cluster.

❍ Communication overhead between different hosts in the cluster is much higher than
communication overhead between two processes on the same host.

❍ If a single NRE is distributed across several hosts, only one of those hosts has a
Supervisor process. Because the Supervisor takes some CPU resources, it might
compete with NPs running on the same host, so that NPs on that host run slightly
slower than NPs on other hosts. To avoid load balance problems, consider allocating a
whole CPU to the Supervisor.

Figure 12 Running in a Clustered Environment

See Setting up a Cluster to Run NuPIC on page 73 and How to Use NuPIC in Complex
Configurations on page 76.

Host 1

CPU 1 CPU 2

An HTM network is split across two NPs. Each NP runs on
a different processor.

Host 1

CPU 1 CPU 2

Each NP hosts a full HTM Network

Host 1 Host 2

Running in a clustered environment; the Supervisor runs on one of the machines in the cluster.

Advanced NuPIC Programming

70 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

Running in Parallel: Experiment Mode

The simplest way to take advantage of multiple CPUs is to run multiple instances of the
NRE, each with a separate HTM Network.

While this approach is simple (so simple that it is called “embarrassingly parallel” in the
high performance computing literature) it can be effective, and avoids many of the
potential pitfalls of parallel processing.
This approach is particularly useful in experiment mode. For example, you might want to
train an HTM Network using different learning parameters, and see what values of the
parameters have the best results.
You can use multiple NRE instances by launching multiple copies of your controlling
Python script. To avoid possible problems, you must structure your script as follows:

❍ Each script must use a separate session bundle directory. Because the system creates
new bundle directories (with .1, .2, etc. suffixes) automatically, this is not normally an
issue.

❍ If a session writes to a file outside the session bundle, you must ensure that it uses a
unique output filename.

While it is possible to start and control multiple sessions from within a single Python
program, it is difficult to get good performance with this approach. Python itself is
single-threaded (even when using Python “threads”), so Numenta does not recommend
performing simultaneous computation from one Python script.
Multiple NRE instances are supported automatically by the NetExplorer framework,
which can explore the parameter space by running several experiments in parallel. See
Using Numenta NetExplorer on page 100.

Multiple NREs make sense only if you have multiple CPUs.

 Advanced NuPIC Programming

Running in Parallel: Large Problem Mode | 71

Running in Parallel: Large Problem Mode

In some situations, especially when you work with a large problem, using a single NRE
with more than one NP can improve execution speed.

You can start the NRE using TrainBasicNetwork(), or the RuntimeNetwork or Session
interface.
In all cases, the network is automatically allocated to NPs in a round-robin fashion. If the
HTM Network sizes can easily be divided across a small number of NPs, the default
scheme also provides good default load balancing if you are using the basic scheduler.

Using RuntimeNetwork in Large Problem Mode
You can create a runtime network that uses more than one NP by using the optional
numNodeProcessors argument to CreateRuntimeNetwork. The following example creates
a RuntimeNetwork with four NPs.
myRuntimeNetwork = CreateRuntimeNetwork (

<netfilename>.xml,
files =[<dataFiles],
numNodeProcessors = 4)

Using Sessions in Large Problem Mode
You can use multiple NPs using a SessionConfiguration object. This section uses the
Session interface as an example.

1. Import the Session and SessionConfiguration classes:
from nupic.network import Session, SessionConfiguration

2. Create a Session object:
mySession = Session("dir/subdir/mysession")

This step is identical to the single-process session creation.

3. Add the files the session needs.

This step is identical to the single-process session bundle management, discussed in
Sessions and Session Bundles on page 49.

4. Build a SessionConfiguration object for storing advanced session parameters:
myConfig = SessionConfiguration()

5. In the simplest case, you specify only the number of node processors. This example
starts four NPs:
myConfig.setNumNodeProcessors(4)

6. Start the session using the custom-configured SessionConfiguration as an argument:
mySession.start(myConfig)

The degree of improvement (if any) depends on the structure of your HTM, the scheduler you
choose, the hardware on which you’re running, and some other factors. See Different Schedulers
with Multiple NPs on page 59 for a discussion of potential issues.

Advanced NuPIC Programming

72 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

After you’ve started the multi-process session, all training, shutdown, and bundle
management methods are identical to their single-process counterparts.

More complete information about the SessionConfiguration can be found in How to
Use NuPIC in Complex Configurations on page 76.

Using TrainBasicNetwork() in Large Problem Mode
If you want to use the helper functions in a multi-NP environment:

1. Create a RuntimeNetwork that includes node processor information.

2. Pass in that network when you call TrainBasicNetwork().

NuPIC decides on which CPUs to run which NP. You don’t currently have control over NP
assignment.

 Advanced NuPIC Programming

Setting up a Cluster to Run NuPIC | 73

Setting up a Cluster to Run NuPIC

This section discusses setting up a cluster to run NuPIC.

Introduction to Cluster Setup
A cluster is a collection of hosts that are designed to operate as a single computational
resource. NuPIC can be run on a cluster either in experiment mode (running multiple
HTMs concurrently) or large problem mode (running a single HTM).
This section defines some basic terminology, describe the minimum requirements for
running NuPIC, and make some suggestions for cluster setup.

Terminology

❍ Cluster — A cluster is a collection of hosts, networked together. In the field of cluster
computing, these hosts are usually known as nodes, but to avoid confusion with an
HTM Node, this document uses the term host instead.

❍ Head host and compute host — A cluster often contains a head host (also called head
node) where you log in and work interactively, and a number of compute hosts whose role
is computation (in this case, running the NRE).

A typical cluster configuration is shown in Figure 13.

Figure 13 Typical Cluster Configuration

In the configuration above, the head host has two network interfaces. One interface
connects to the Internet or local area network, and the other to the cluster. The only way
to access the cluster is through the head host.

Cluster setup is an advanced topic. You should have experience running NuPIC on a single host
and working with HTMs before you try to use NuPIC on a cluster. You should also be proficient
in Linux systems administration. (If you don’t know the acronyms used in this section, you
probably don’t know enough to set up a cluster).

Head host

Compute
host

Compute
host

Compute
host

Compute
host

Gigabit
Ethernet
Switch

Internet or LAN

Advanced NuPIC Programming

74 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

Many other configurations are possible, but we suggest this one for people who are new
to clusters, because it has fewer security issues than a cluster in which every host is
accessible from the Internet.

Requirements
The following software configuration is required to run NuPIC in large problem mode
and is strongly recommended for all uses of NuPIC on a cluster.

❍ NuPIC is enabled for clusters for all supported operating systems except Microsoft
Windows. NuPIC has not been tested on darwin or darwin86 clusters. All hosts in the
cluster must use the same operating system.

❍ A shared file system must be mounted by all hosts in the cluster at the same mount
point. Typically this shared file system is an NFS file system exported by the head
host, but does not have to be.

❍ UIDs must be common across the cluster. Usually cluster-wide UIDs are provided by
LDAP or NIS.

❍ Passwordless ssh must be enabled between any two nodes in the cluster. There are
many ways to configure ssh so that no password is required (see ssh documentation).

❍ NuPIC must be installed in the same location on all hosts (installing it in the shared
file system makes this easier).

Additionally, we recommend the following:

❍ The network should be switched Gigabit Ethernet or faster. The network is probably
not a bottleneck when running in Experiment Mode, but could be a bottleneck when
running in large problem mode, depending on a number of factors as discussed
elsewhere in this chapter.

❍ All compute hosts should be identical (same processor) when running in large
problem mode. Using hosts with processors running at different speeds greatly
complicates load balancing.

❍ All unnecessary services should be turned off on the cluster. Daemons for services
(even unused services) compete with NuPIC for CPU time and degrade NuPIC
performance.

For more information, consider reading the archives of the beowulf mailing list
(www.beowulf.org). There are also a number of books on setting up clusters — search for
“beowulf cluster” at an online bookseller.
NuPIC includes an MPI implementation. You do not need to (and probably should not)
install MPI on your cluster. Note that NuPIC uses TCP for inter-host messages, and does
not take advantage of high-performance cluster interconnects.

 Advanced NuPIC Programming

Setting up a Cluster to Run NuPIC | 75

Cluster Performance Bottlenecks and Host Hardware
Users often ask what type of processor they should use, and how many cores should be in
each host. These questions have no universal answers, and we can offer only general
advice. We also have no recommendation for cluster vendor.
A single machine is limited in

❍ Memory bandwidth (constrains total performance, depending on algorithm details)

❍ Number of cores (constrains degree of parallelism)

❍ Amount of memory (constrains problem size)
When one of these factors is your bottleneck, running on a cluster might improve
performance.
We strongly recommend the following:

❍ Do not run more numenta_runtime processes than cores. The number of cores is
therefore a hard limit.

❍ Never run more than one instance of the NRE on a single host, even if there appear
to be enough cores. Two two-process runtime engines use the same two cores, even in
a quad-core machine, because NuPIC binds its processes to specific cores to prevent
unnecessary context switching, cache invalidation, and other problems.

Because memory contention is difficult to measure, and because no simple specification
can help you resolve memory contention, such bottlenecks are hard to resolve. Memory
bandwidth is usually a problem before the number of cores becomes a problem. You
might therefore achieve better performance running on two dual-core processors than on
a single quad-core processor. Intel and AMD memory systems are completely different,
and results for one system do not apply to the other. NuPIC is memory
bandwidth-intensive, and not cache friendly.
When you move to a cluster, interconnect bandwidth and latency become constraints.
Technically these constraints also apply on a single machine, but you run into other limits
first.
For experiment mode, cluster interconnect bandwidth and latency is not a limiter, so it
makes sense to move to a cluster as soon as memory bandwidth contention starts to limit
performance.
For large problem mode, there hasn’t been much experimentation. Networks with many
fat nodes (tens of thousands of coincidences) are likely to run well on a cluster. Other
information is still to be discovered.

Advanced NuPIC Programming

76 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

How to Use NuPIC in Complex Configurations

You can use the SessionConfiguration object for advanced session configuration. By
default, the Session interface starts an NRE with one NP on the same machine on which
the Python program from which you started the session is running.
Using a SessionConfiguration object allows you to do one or more of the following:

❍ Using Multiple NPs on page 76

❍ Starting a RuntimeNetwork or a Session that Runs on a Cluster on page 76

❍ Launching on a Remote Host on page 78.

Using Multiple NPs
How to run your HTM Network using multiple NPs is discussed in some detail in
Running in Parallel: Large Problem Mode on page 71.

Starting a RuntimeNetwork or a Session that Runs on a Cluster
A cluster consists of several computers, each with one or more CPUs. Clusters have
additional software requirements beyond what is needed for a single host.

For the following examples, assume you have a cluster with four hosts: SnowWhite is the
master host and Green, Brown, and Gray are the other hosts in the cluster.

To create and start a RuntimeNetwork to run on a cluster:

1. Import the CreateRuntimeNetwork, SessionConfiguration, and
SessionServerDistribution classes:
from nupic.network import (CreateRuntimeNetwork, SessionConfiguration,

SessionServerDistribution)

2. Build a SessionConfiguration object, which stores all advanced session parameters:
myConfig = SessionConfiguration()

3. Change the numNodeProcessors parameter for the session configuration:
myConfig.setNumNodeProcessors(5)

4. Create a SessionServerDistribution object:
myServerDist = SessionServerDistribution()

5. Add the hosts in the cluster to myServerDist. Don’t add the head host.

Be sure to read the earlier sections of this chapter before you start multiple NPs.

The assignment of NPs to CPUs is currently handled by the NRE. You have no control over the
assignment.

Running on a cluster is not supported for Microsoft Windows.

 Advanced NuPIC Programming

How to Use NuPIC in Complex Configurations | 77

myServerDist.addServer ("Green")
myServerDist.addServer ("Brown")
myServerDist.addServer ("Gray")

6. Add myServerDist to the session configuration object:
myConfig.setServerDistribution (myServerDist)

7. Create a RuntimeNetwork with the custom session configuration and any files the
NRE needs to access.
myNetwork = CreateRuntimeNetwork(<netfilename>.xml,

files = [<myfiles>],
config = myConfig)

To create and start a session to run on a cluster:

1. Import the Session, SessionConfiguration, and ServerDistribution classes:
from nupic.network import Session, SessionConfiguration,

SessionServerDistribution

2. Create a Session object:
mySession = Session("dir/subdir/mysession")

This step is identical to the single-process session creation.

3. Add files the session needs.

This step is identical to the single-process session bundle management, discussed in
Sessions and Session Bundles on page 49.

4. Build a SessionConfiguration object, which stores all advanced session parameters:
myConfig = SessionConfiguration()

5. Change the numNodeProcessors parameter for the session configuration:
myConfig.setNumNodeProcessors(5)

6. Create a SessionServerDistribution object:
myServerDist = SessionServerDistribution()

7. Add the hosts in the cluster to myServerDist. Don’t add the master server.
myServerDist.addServer ("Green")
myServerDist.addServer ("Brown")
myServerDist.addServer ("Gray")

8. Add myServerDist to the session configuration object:
myConfig.setServerDistribution (myServerDist)

9. Start the session with the custom session configuration:
mySession.start (myConfig)

Advanced NuPIC Programming

78 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

Launching on a Remote Host
At times, you might want to start the NRE from one host but run it on a remote host. For
example, you might want to use a remote cluster that has more processing power than
your local system.

To understand what happens when you launch remotely, consider the processes that run
as part of NuPIC (see also NRE Process Structure with Multiple NPs on page 67).

❍ Python script

❍ launcher & orterun

❍ orted

❍ Supervisor

❍ NP (one or more)
If you’re launching NuPIC remotely on a single host, only the Python script runs locally.
The processes are distributed as follows:

Figure 14 Processes After Launching Remotely on a Single Host

If you’re running on 2 remote hosts and use 3 NPs, the processes are allocated as follows:

Figure 15 Processes After Launching 3 NPs on a Remote Host

If you’re launching the NRE on a remote cluster, the processes are allocated as follows:

Figure 16 Processes After Launching the NRE on a Remote Cluster

Launching on a remote host is not supported on Microsoft Windows.

Python script

Local host
Launcher & orterun
orted
Supervisor
NP

Remote host

Python script
Launcher & orterun

Master

orted
Supervisor
NP

Compute Host 1

orted
NP
NP

Compute Host 2

Launcher & orterun

Master

orted
Supervisor
NP

Compute host 1

orted
NP
NP

Compute host 2

Python script

Local host

 Advanced NuPIC Programming

How to Use NuPIC in Complex Configurations | 79

This section steps you through creating and starting a session on a remote host.

To create and start a session to run on a remote host:

1. Import the Session, SessionConfiguration, and ServerDistribution classes:
from nupic.network import Session, SessionConfiguration,
SessionServerDistribution

2. Create a Session object:
mySession = Session("dir/subdir/mysession")

This step is identical to the single-process session creation.

3. Add files the session needs:

This step is identical to the single-process session bundle management, discussed in
Sessions and Session Bundles on page 49.

4. Build a SessionConfiguration object and specify its parameters (see Customizing a
SessionConfiguration object to run on a remote host on page 79).

5. Start the session with the custom session configuration:
mySession.start (myConfig)

To set up a RuntimeNetwork to run on a remote host:

1. Import the CreateRuntimeNetwork, SessionConfiguration, and
SessionServerDistribution classes:
from nupic.network import (CreateRuntimeNetwork, SessionConfiguration,

SessionServerDistribution)

2. Build a SessionConfiguration object and specify its parameters (see Customizing a
SessionConfiguration object to run on a remote host).

3. Create a RuntimeNetwork with the custom session configuration and any files the
NRE needs to access.
myNetwork = CreateRuntimeNetwork(<netfilename>.xml,

files = [<myfiles>],
config = myConfig)

Customizing a SessionConfiguration object to run on a remote host

1. Build a SessionConfiguration object, which stores all advanced session parameters:
from nupic.network import SessionConfiguration
myConfig = SessionConfiguration()

2. Change the parameter for the session configuration. You can change the following
parameters:

setLaunchHostname Host name for the remote host.

Advanced NuPIC Programming

80 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

The following example illustrates this:
from nupic.network import SessionConfiguration
myConfig = SessionConfiguration()

launchHostname = "SnowWhite"
myConfig.setLaunchHostname(launchHostname)

tunnelport_number = 2600
myConfig.setTunnel(tunnelport_number)

username = "rblack"
myConfig.setUsername(username)

myConfig.addToEnv("PATH", "/opt/nta/current/bin")
myConfig.addToEnv("PYTHONPATH",

"/opt/nta/current/lib/python2.4/site-packages")

myConfig.addToEnv("NTA_LICENSECONFIG", "/home/rblack/.nta/license.cfg")
myConfig.setPython("/usr/local/bin/python")

setTunnel Turns on ssh tunneling. The number specifies a TCP/IP port on the
tools host that accepts socket communications, routes it through
encrypted ssh, and establishes a connection to the NRE on the
launch host.
Pick a number greater than 1025. Do not run two session instances
using the same tunnelport number at the same time.

setUsername Needed only if your user name on the remote host differs from the
user name on the local host.

addToEnv Allows you to specify any environment variables you might need to
set on the remote host.

setPython Allows you to specify the path to the Python executable to use, for
example, if the remote host uses Python 2.3 by default but you need
to use Python 2.4 to work with NuPIC.

 Advanced NuPIC Programming

SessionConfiguration Object Methods | 81

SessionConfiguration Object Methods

This section summarizes all SessionConfiguration methods. It includes a brief
description or points to the section where the method is discussed.

Method Description Default
setLaunchHostname
(string hostname)

Sets the name of the host (e.g. cluster1.numenta.com) where the
launcher will be run to launch the runtime engine. "Password-less ssh"
is required to a use a non-default launch host.

localhost

setTunnel (integer port) Sets the TCP/IP port to use for tunneling through firewalls to reach
the host the Supervisor will run on. The port number is used to open a
tunnel that receives data on that port on the local host and forwards the
data to the Supervisor host by tunneling (using ssh) through the launch
host. Contact Numenta Support if there’s a firewall between the local
and the remote host.

None. ssh
tunneling is not
used.

setUsername (string
username)

The user name that must be specified to log into the launch host via
ssh. "Password-less ssh" is required to use a non-default user name.

None. Uses the
current login user
name.

setNumNodeProcessors
(integer
numNodeProcessors)

Sets the number of NPs to launch on the remote host(s). This number
is incremented by 1 internally to account for the Supervisor process to
calculate the total number of processes to launch. To launch a single
Supervisor and 2 NPs, call setNumNodeProcessors(2).
See Using Multiple NPs on page 76 for an example.

1
(A single
Supervisor and a
single NP is
launched.)

addToEnv (string key,
string value)

Specifies an additional environment variable that should be set on the
launch host. Can be called repeatedly to build up a list of environment
variables to set. Certain environment variables receive special treatment
within this call. For example, if PATH is set this way, the specified path
is prepended to the default PATH available on the launch host.

Empty list.
(No additional
environment
variables are set.)

setPython (string path) Set the full path to the Python executable on the remote host. If the
remote host has a non-standard installation of Python 2.4 (not named
"python" accessible from PATH), the custom path can be specified
here. This might be necessary if the user’s environment has not been
fully configured.

 python

setServerDistribution
(serverDistribution)

Specifies the set of hosts across which the Supervisor and NPs are
distributed. SessionServerDistribution is an object that holds a list
of host descriptions. This data structure is analogous to an MPI host
file.
To use this method, you must first build a
SessionServerDistribution, as follows:
serverDistribution = SessionServerDistribution()
serverDistribution.addServer(string hostname)

See Starting a RuntimeNetwork or a Session that Runs on a Cluster on
page 76 for a complete example.

A single host (the
launch host).

Advanced NuPIC Programming

82 | Chapter 5 Using the Numenta Runtime Engine: Advanced Topics

 Advanced NuPIC Programming

| 83

A Examples

This appendix gives information about the examples available for Numenta developers.
For each example, it discusses the problem it solves and explains the implementation. It
also lists the script, explains what each script does, and discusses how you can experiment
and view results using the example.

Topics

❍ Bitworm Example, page 84

❍ Waves Example, page 85

❍ Net_Construction Examples, page 87

❍ Flu Example, page 89

❍ Speech Example, page 92

❍ Pictures Example, page 93

The Images example is discussed in a separate document.

Advanced NuPIC Programming

84 | Appendix A Examples

Bitworm Example

The Bitworm example is a very simple program that is meant to illustrate how to build
and run an HTM Network using node tools.

Problem Definition
In the Bitworm world, there are two types of bitworm, solid and textured. Each bitworm
is a 16-bit vector. Solid bitworms include a sequence of on bits, textured bitworms include
a sequence of on-off-on-off etc. bits.

Implementation
The Bitworm scripts use the most basic way of creating an HTM Network: node tools,
explicit links, and sessions that are created and invoked explicitly. See Understanding the
Example Scripts, page 20 in Getting Started With NuPIC.
The RunOnce.py script is the entry point; it allows you to change parameters. For example,
you can add noise to the training data or the testing data.

Exploration and Verification
By default, RunOnce.py trains with data that don’t contain additive or bitflip noise, then
tests first with the same data, then with a second set with a different seed.
You can then make changes to the RunOnce.py script, for example, to add noise, then
rerun the example. After each run, you can examine the results.txt file to see the
statistics and a display of the groups.

Notes
There are two versions of Bitworm. One is a simple getting started example, the other
(bitworm_sessions) illustrates using sessions and enabling and disabling nodes for
learning and inference.

See Also
Bitworm: Getting Started Example, page 13 in Getting Started With NuPIC.

Solid bitworms Textured bitworms

 Advanced NuPIC Programming

Waves Example | 85

Waves Example

The Waves example implements an HTM Network that categorizes the state of a river in
which sensors have been placed.

Problem Definition
The Waves example assumes there’s a set of temperature monitors in a river. Hot and cold
spots migrate down the river. If there’s a hot spot upstream, it appears downstream after a
short time.

Figure 17 Waves Example

A given pattern of temperatures is called a state. Put slightly differently, the patterns of
temperatures observed at the sensors are manifestations of an underlying "cause",
unspecified in this example, but that called the state of the river.
The goal of the program is to identify the river as being in one of four states. Based on
the observed temperature patterns, we want the HTM network to infer which state the
river is in. Each state is represented by a Gaussian curve that shows, for example, one hot
spot (category 0) two hot spots (category 1), one hot and one cold spot (category 2), or
two hot spots with a cold spot between (category 3):

Figure 18 Waves State Example: Category 3 Data

Advanced NuPIC Programming

86 | Appendix A Examples

Implementation
The waves example is slightly more complex than Bitworms. There are several versions of
the program:

❍ The top-level example uses the helper functions.

❍ runtimeNetwork uses the RuntimeNetwork interface.

❍ simplehtmWaves uses the SimpleHTM interface. This interface is no longer
recommended.

Experimenting with Waves

In each example, you can add two types of noise.

❍ Spatial noise — The first is spatial noise. In each class, the center of each Gaussian is
given a random horizontal offset. This offset is chosen based on the spatialNoise
parameter; the offset is chosen uniformly in the range [-spatialNoise/2,
spatialNoise/2].

❍ Thermal noise — Each data point has a small amount of noise added. The amount is
controlled by the thermalNoise parameter, and is chosen uniformly in the range
[0,thermalNoise].

Noise defaults to 0. You can modify it by changing the following parameters in the
RunOnce.py script.
Training Data Parameters:
trainThermalNoise = 0.0
trainSpatialNoise = 0.0

Testing Data Parameters
testThermalNoise = 0.0
testSpatialNoise = 0.0

See Also
Understanding HTM Development: Waves Example, page 25 in Getting Started With
NuPIC uses the Waves example to illustrate HTM Development tasks.

 Advanced NuPIC Programming

Net_Construction Examples | 87

Net_Construction Examples

The scripts in the net_construction folder illustrate how to create different network
topologies using the NuPIC network construction APIs. Each script creates a single
network structure.

Most of the scripts use the region and link policy concepts.

❍ A region is a set of nodes that share the same node type and settings. For example,
each level in an HTM network is typically a single region. A region can have an
implicit multi-dimensional structure. As an example, for image recognition, it helps to
have the early levels in your network arranged in a two-dimensional fashion. See
Regions, page 30.

❍ A link policy specifies how two regions can connect. A link policy makes it easy to
connect two regions, and automatically takes into account fan-in, overlapping
connections, and multi-dimensional structure. See Link Types, page 28.

Regions and link policies make it easy to create common network structures with a few
API calls.

Example Scripts
The following scripts are included:

NO attempt has been made to validate that these networks actually learn anything
useful! The scripts are merely meant to illustrate the mechanics of using the network
construction APIs. For useful networks, please see the other examples, such as bitworm,
waves, wallstreet, flu, and pictures.

Table 5: Scripts in the net_construction example set

Script Description
LogoNetwork.py Creates a simple 7 node network by creating individual nodes and links.

LogoNetworkRegions.py As above but uses regions and link policies.

OneDimensional.py Creates a one-dimensional network, that takes 4096 inputs and consisting of
137 nodes.

PicturesNetwork.py Creates a two dimensional network similar to Pictures.

PicturesNetworkPassThrough.py Creates a two dimensional network similar to Pictures but adds
PassThroughNodes so the network can be pipelined.

ImageNetwork.py Create a large network to process one megapixel images.

ImageNetworkOverlapping.py s above, but with overlapping receptive fields at each level.

Advanced NuPIC Programming

88 | Appendix A Examples

MultiNetwork.py Creates a large HTM network that combines two sensory modalities. The first
modality (say audio) is processed using a one-dimensional network. The second
modality (say vision) is processed using a two dimensional network. The two
modalities are combined at a higher level.

MergedNetwork.py Creates a new merged network from two existing network files. Specifically, this
example takes the Pictures and OneDimensional networks created above, loads
them, and creates a new network that is the equivalent of the MultiNetwork. If
the existing networks had undergone training, the trained states would be
preserved in this new network.

Table 5: Scripts in the net_construction example set (Cont’d)

Script Description

 Advanced NuPIC Programming

Flu Example | 89

Flu Example

The flu example demonstrates how to explore a trained HTM network using
RuntimeNetwork and Zeta1 analysis functionality.
Detailed API documentation on the classes used can be found using NodeHelp.

Problem Definition
The HTM Network is meant to predict when there will be a flu epidemic. The data are
very noisy, but the HTM Network performs some preprocessing that allows it to
determine the peak months for flu.
The data used in this example is weekly influenza mortality data from nine reporting
regions around the US. The numbers in the data files represent weekly log influenza
mortality risk.
For more information about the reporting system and available data, see:
http://wonder.cdc.gov/mmwr/mmwrmort.asp

Implementation
The flu example uses SimpleHTM, an older API that allows you to quickly create nodes by
specifying parameters.
The example includes the following files.

Table 6: Flu example files

File Description
learn.py Creates and trains an HTM network from the data.

explore.py Explores the contents of the trained HTM network.

utils.py A collection of utility functions supporting explore.py.

runinference.py Runs trained HTM inference on test data.

data/data.txt The original data used to test the inference of the HTM.

data/train.txt Smoothed training data generated from data.txt.

visuals/cities.pdf Visualization of the spatial relationship between the data.

visuals/risk.pdf Visualization of the test data.

visuals/smooth.pdf Visualization of the smoothed training data.

cleanup.py Cleans up files created when running.

README.txt Description of the example and how to use it.

Advanced NuPIC Programming

90 | Appendix A Examples

Learning from the Example
The example focus is on exploring a trained HTM network. This section explains the
output of explore.py.

1. First, the script loads the trained HTM network file in trained.xml, and enumerates
the elements of the network. The network has a sensor, a bottom level with 3 nodes, a
top level with a single node, and an output node.
Loading a network...

Elements in the network:

Node sensor ()
Region level1 (3,)
Region level2 (1,)
Node output ()

2. Next, the script chooses a single bottom-level node and prints its learned data
structures. You can find similar information in the Visualizer output at
trained/level1[0]/index.html.

Exploring node level1[0]:

Node 0 coincidences:
[[0.102307 0.28016099 -0.0273473]
 [-0.40698501 -0.0392707 -0.23639201]]
Node 0 counts:
[261, 195]
Node 0 TAM:
[[241. 8.]
 [9. 180.]]
Node 0 groups:
[set([0]), set([1])]

3. The script then analyzes the learned data structures of the top node.
Exploring the top node:

Top coincidences: 6
[[1, 1, 2], [1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 1, 1], [2, 1, 2]]
Top groups: 3
[set([1, 2, 3, 4]), set([0]), set([5])]
Top TAM (sorted): [4, 1, 1]
[[822. 77. 54. 72. 148. 7.]
 [41. 66. 80. 0. 3. 0.]
 [60. 38. 1162. 104. 2. 4.]
 [110. 0. 70. 424. 11. 5.]
 [137. 9. 0. 14. 1180. 0.]
 [0. 0. 0. 0. 16. 4.]]

4. The groups and coincidences of the top node are difficult to interpret, as they refer to
distributions over the outputs of the bottom nodes. To help interpret the groups in
the top node, the script then uses utility functions in utils.py to print all sensor-level
inputs that correspond to each of the three top node groups.
Playing down top groups:
Group: 0
 Sample: 0
 Child: 0 [0.102307 0.28016099 -0.0273473]
 Child: 1 [0.0361848 0.174444 0.0524514]
 Child: 2 [-0.21359199 -0.140718 -0.0217913]
 Sample: 1

 Advanced NuPIC Programming

Flu Example | 91

 Child: 0 [0.102307 0.28016099 -0.0273473]
 Child: 1 [-0.27483699 -0.28606001 -0.23867799]
 Child: 2 [-0.21359199 -0.140718 -0.0217913]
 Sample: 2
 Child: 0 [-0.40698501 -0.0392707 -0.23639201]
 Child: 1 [-0.27483699 -0.28606001 -0.23867799]
 Child: 2 [-0.21359199 -0.140718 -0.0217913]
 Sample: 3
 Child: 0 [-0.40698501 -0.0392707 -0.23639201]
 Child: 1 [0.0361848 0.174444 0.0524514]
 Child: 2 [-0.21359199 -0.140718 -0.0217913]
Group: 1
 Child: 0 [0.102307 0.28016099 -0.0273473]
 Child: 1 [0.0361848 0.174444 0.0524514]
 Child: 2 [0.108758 0.28517699 0.302306]
Group: 2
 Child: 0 [-0.40698501 -0.0392707 -0.23639201]
 Child: 1 [0.0361848 0.174444 0.0524514]
 Child: 2 [0.108758 0.28517699 0.302306]

5. Finally, the script loads the test data file and watches the state of the top node change
as sensor inputs are processes in inference mode.
Watching an internal parameter:

Iteration: 1 level2[0] spatialPoolerOutput
1.0 0.0 0.0 0.0 0.0 0.0
Iteration: 1 level2[0] bottomUpOut
0.0 0.0 1.0 0.0 0.0

Iteration: 2 level2[0] spatialPoolerOutput
1.0 0.0 0.0 0.0 0.0 0.0
Iteration: 2 level2[0] bottomUpOut
0.0 0.0 1.0 0.0 0.0

Iteration: 3 level2[0] spatialPoolerOutput
0.4 0.0 0.0 0.0 0.0 1.0
Iteration: 3 level2[0] bottomUpOut
0.0 0.0 0.4 1.0 0.0

Iteration: 4 level2[0] spatialPoolerOutput
0.7 1.0 0.0 0.0 0.0 0.0
Iteration: 4 level2[0] bottomUpOut
0.0 0.4 0.7 0.0 0.0

Iteration: 5 level2[0] spatialPoolerOutput
0.4 1.0 0.0 0.0 0.2 0.1
Iteration: 5 level2[0] bottomUpOut
0.0 0.4 0.4 0.1 0.0

Iteration: 6 level2[0] spatialPoolerOutput
0.0 0.0 0.0 1.0 0.0 0.0
Iteration: 6 level2[0] bottomUpOut
0.0 0.4 0.0 0.0 0.0

Iteration: 7 level2[0] spatialPoolerOutput
0.0 0.0 1.0 0.2 0.0 0.0
Iteration: 7 level2[0] bottomUpOut
0.0 0.2 0.0 0.0 0.0

Advanced NuPIC Programming

92 | Appendix A Examples

Speech Example

The speech example includes a set of audio files and experiments for classifying human
speech using HTM. The example trains HTMs to classify data by gender and by speaker.
A PDF included with the example explains the data collection, file structure, and training
process and also suggests how you can experiment with the data.

Problem Definition
The speech HTM experiments perform two tasks:

❍ For a new audio file with speech data, determine whether the speaker is female or
male.

❍ For a new audio file with speech data, determine the speaker from the set of speakers
already known to the HTM Network.

Speech Data
Speech data are based on recordings of text read by four individuals. Each reading was
divided into a 20-second training sequence and six 5-second test sequences. Each
experiment processes the audio into 100 "frames" per second. The HTM is trained and
tested using these import vectors.

HTM Network Structure
The examples use simple HTM Network structures. One example uses the simplest
possible structure for training: a sensor, spatial pooler region and temporal pooler region.
After the HTM Network has been trained, a classifier node is added. The classifier builds
a mapping between the HTM’s training data output and a classification file. During
subsequent runs, the classifier evaluates new data submitted through the trained HTM
and computes an appropriate classification.

Running the HTM Network
The PDF included with the example discusses each of the included experiments, the
audio preprocessing, and how to evaluate speech HTMs.

 Advanced NuPIC Programming

Pictures Example | 93

Pictures Example

This section introduces the Pictures example. For more detailed information on some of
the topics, see the README file included with the program. For a discussion on what
happens at runtime, see Training Your HTM Network: The Pictures Example, page 64 in
Getting Started With NuPIC.

Problem Definition
The Pictures HTM Network recognizes pictures. The current dataset consists of 453
hand-drawn black and white pictures divided into 48 categories such as cat, dog, or rake.
Each picture is 32x32 pixels. There are 5-20 examples of each category. Here are some
examples of a rake (which actually looks more like a pitchfork). You can see how the rake
has different sizes and different distances between prongs.

Figure 19 Example of Rake in Pictures Example Set

After the HTM Network has been trained, it can recognize the pictures in the training set
but can also recognize new pictures in the same category. For example, it might recognize
a pitchfork with a long handle and short prongs. The Pictures retrain functionality makes
it possible to add new categories to a previously trained HTM Network quickly.

Implementation
You can run the example either embedded in the NetExplorer framework
(RunExperiments.py) or standalone (RunOnce.py). Both scripts call the other scripts that
are part of the example as needed. A number of other scripts are also included, as follows:

This example is being replaced by the images example. The discussion is left in this document
because the example includes some interesting implementation specifics.

Script Description Output
RunOnce.py Simple command-line script that illustrates most

of the basic aspects of the Pictures example. The
script runs through several steps, including
creating, training, and testing a network.
This script is a basic introduction, like a
HelloWorld program.

Several files. The most important
ones are:
pic.trained.xml
pic.retrained.xml
pic.report.txt

pic.test<n>.results files are also
available after the run.

Advanced NuPIC Programming

94 | Appendix A Examples

Node Hierarchy

The Pictures HTM Network uses the following hierarchy of nodes:

❍ At the bottom level, each node is divided using an 8x8 grid and sees a 4x4 pixel
viewing window of the picture at any time. That means there are 64 viewing windows
at that level. During training, the node looks through sequential viewing windows, first
left to right, then top to bottom.

❍ The next level uses by default a 2x2 grid; each viewing window is 16x16 pixels. The
grid can be changed, in fact, the Topology experiment tests a 4x4 middle level.

❍ The classifier node gets input from all the viewing windows at the previous level.
Pictures has been designed to test different topologies. You could, for example, try a
different grid for level 2 or add another level of learning level.

Training Process

During training, each picture is submitted to the HTM Network as if it were moving: The
simulated movement goes both horizontally and vertically. The process is repeated for
each picture in the category. This provides the temporal aspect. The HTM Network looks
through a window and sees a cat or dog go by. For each time instance, something
different is visible.

RunExperiments.py Framework for systematically running
experiments to test the effects of varying
different network, training, and/or testing
parameters.
This script is a large-scale framework for running
the example. It allows you to run various
prepared experiments and can be extended to
run custom experiments.

results.pkl
plot.ps

These are created inside the
experiments/<experiment_name>/
directories.

PicturesDemo.py A set of scripts that support a graphical user
interface (GUI). The GUI allows you to
experiment with the application and understand
all basic concepts.

No output.

BuildPicturesNet.py Command-line tool for quickly building and
testing a Pictures network.
This is a utility tool for building new networks
from different training sets.

Depends on the command-line
arguments.

PicturesVisualizer.py A command-line tool for invoking the Visualizer
tool on a Pictures network.

Depends on the command-line
arguments.

Script Description Output

 Advanced NuPIC Programming

Pictures Example | 95

Because the program fully scans each picture horizontally and vertically, one node has all
the information a node can have. The training process takes advantage of that: It
completely trains one node, then copies the state of that node to all the other nodes at the
same level.

Data Files

The Pictures example ships with two sets of picture data.

❍ The first data set, called clean, consists of non-noisy drawings of 48 different object
categories, such as cat, dog, and helicopter. There are a total of 453 pictures in this
data set. The pictures are in 1-bit/pixel .bmp format, and are organized into 48
different sub-directories, with each sub-directory bearing the name of a particular
object category. The clean data set is intended for training.

❍ The second data set, called distorted, is organized in the same hierarchical directory
structure as clean, and consists of pictures in the same 1-bit/pixel .bmp format.
However, the distorted data set contains pictures that have been warped, corrupted
with noise, and otherwise distorted relative to the clean set. The pictures in this set
provide a large corpus of testing data for evaluating the generalization capability of an
HTM Network.

Both the clean and the distorted sets are in the data.d directory. As shipped, the data
sets are in the form of compressed tar files. They must be decompressed and untarred
before any training or testing of HTMs can be performed.
To decompress and untar the data files, issue the following commands:
python Unpack Pictures.py

The RunOnce.py script automatically decompresses and untars these data sets the first
time it is run. Most of the other scripts perform decompression as well.

Exploration and Verification
The Pictures RunOnce.py script demonstrates most of the Pictures functionality. It
performs a total of twelve steps, including the creation, training, and testing of a new
network, followed by a retraining stage. During retraining, additional categories are
presented and the classifier node is trained on these new categories.
The RunOnce.py script also illustrates how to perform runtime inference, as opposed to
batch testing.
Batch testing is for systematically presenting a large set of test data to the HTM to
measure its performance. Runtime inference presents a single pattern at a time to the
HTM in the context of a real, deployed application.
The RunOnce.py script generates a report that summarizes the results of the twelve steps.
The report exemplifies the mechanism by which application code can gain access to
internal node details.

Training one node, then copying its state dramatically speeds up training time.

Advanced NuPIC Programming

96 | Appendix A Examples

To run the RunOnce.py script:

cd <NuPIC location>/share/projects/pictures
python RunOnce.py

RunOnce.py takes four optional switches:

During a run, RunOnce.py prints output to the console that describes the training and
testing process.

Experimenting Using the Pictures Demo GUI
The Pictures example includes an interactive, GUI-based demonstration program called
Pictures. Pictures Demo is built from a collection of classes called Phoenix.
Pictures allows you to sketch a hand-drawn picture using the mouse, and immediately
present that drawing to a pre-trained HTM. The HTM runs inference on the drawing and
display the best matching object categories.
Pictures Demo consists of a core application class, called PhoenixCore, and a GUI layer
that implements a particular skin. The Pictures demo ships with two skins:

❍ Basic skin, implemented by the PhoenixGui class. The Basic skin allows you to draw
sketches, shift them horizontally and vertically, and add noise to the pictures by
clicking a button.

❍ Advanced skin, implemented by the PhoenixGuiAdvanced class derived from
PhoenixGui. The Advanced skin adds the ability to retrain the network with new
custom object categories, and to perform picture transformations, such as rotations,
scaling effects, and spatial distortions.

Phoenix Basic

To launch Pictures Demo with the Basic skin, type: python PicturesDemo.py

--first=N, --last=M Force the script to start on the Nth step (where N=1 by default) and finish on the Mth step
(where M=12 by default). These switches are useful when you wish to perform individual steps
without re-running the entire script.

--short Run a shorter version of the sequence. Allows you to see results sooner.

--deterministic Always seed the pseudo-random number generator to the same value. Allows you to compare
results with results of previous runs to see how things changed.

 Advanced NuPIC Programming

Pictures Example | 97

The following GUI appears:

You can perform the following tasks:

❍ Select a picture.

❍ Modify a picture using your cursor. By default, Draw is selected and you can click or
drag to add black pixels. Select Erase to change black pixels to white.

❍ Add noise to an picture by clicking the Add Noise button, remove noise you’ve
added by clicking Undo.

❍ Click the Continuous recognition check box to see how changes you make to an
picture affect recognition accuracy.

Pictures Demo Advanced

To launch the Pictures Demo with the Advanced skin, type: python PicturesDemo.py
--skin=advanced. The following GUI appears:

The Advanced skin offers the same functionality as the basic skin. In addition, you can
train new categories that were not part of the original training set.

Advanced NuPIC Programming

98 | Appendix A Examples

You can use the following buttons to interact with the HTM Network:
Networks panel

Pictures panel

Transforms panel

Button Description
Load Loads a complete HTM Network.

Unload Unloads the current HTM Network.

Train Retrains the current HTM Network.

Button Description
Load Prompts you for a picture to load.

Unload Unloads the currently selected picture.

Clone Clones the currently selected picture. You can create a new picture by
modifying the clone.

New Creates a new blank picture.

Unload All Unloads all currently loaded pictures.

Save Saves the currently displayed picture to a disk file.

Previous/Next Displays the previous or next picture in the set of pictures currently
loaded.

First/Last Displays the first or last picture in the set of pictures currently loaded.

Button Description
Rot CW Rotates the current picture clockwise.

Rot CCW Rotates the current picture counter-clockwise.

Enlarge Enlarges the picture.

Shrink Shrinks the picture

Distort Distorts the picture by moving its pixels. The result is a picture that
more closely resembles the original than if you’d added noise.

 Advanced NuPIC Programming

| 99

B Numenta NetExplorer

Numenta NetExplorer is an older API for testing HTM Networks and data with different
settings. This appendix discusses using NetExplorer.

Topics

❍ Using Numenta NetExplorer on page 100

❍ Running NetExplorer Tests in Parallel on page 108

Advanced NuPIC Programming

100| Appendix B Numenta NetExplorer

Using Numenta NetExplorer

Numenta NetExplorer makes it easy to test HTM Networks and data with different
settings. NetExplorer is a framework: You instantiate the framework and embed your
HTM Network. You can then run the network with those different settings.
If you decide to use NetExplorer, you spend a little bit more time fitting your network
and data classes into the framework. Once that is done, using the network and testing
results over any ranges of settings is easy.

NetExplorer Basics
To fit your HTM Network into the NetExplorer framework, you must subclass
NetInterface to represent your HTM Network and DataInterface to represent your
data. You also need to represent the values that parameterize your HTM Network as
Parameter objects.
NetExplorer includes the following main classes (additional classes are discussed
throughout this section):

❍ The DataInterface class exports a createData() method for generating data. Your
subclass should override this stub method so that NetExplorer correctly interfaces
with your class.

❍ The NetInterface class exports the createNetwork(), train(data,nprocs,hosts),
and test(data,nprocs,hosts) methods for training and evaluating the network. Your
subclass should override this stub method so that NetExplorer correctly interfaces
with your class.

Both DataInterface and NetInterface are subclasses of Parameterized, a class that has
a collection of Parameters, which are easy to inspect and modify.
Because the NetExplorer classes define a standardized interface, you can design tests that
run on a variety of different HTM Networks. For example, suppose you start with an
HTM Network, Example2Network, and a data set, Example2Data. Then you can train and
test the network like this:
Prepare the data and network

Parameterized

DataInterface NetInterface

<MyDataInterface> <MyNetInterface>

Note that the NetExplorer Data.visualizeData() method is completely different from the
Visualizer visualizeData() method.

 Advanced NuPIC Programming

Using Numenta NetExplorer | 101

trainData = Example2Data()
testData = Example2Data()
network = Example2Network()

Give them all prefixes so they don't write over each other's files
trainData['prefix']= 'train_'
testData['prefix']= 'test_'
network['prefix'] = 'network_'

Create some training data
trainData.createData()

Train the network
network.createNetwork()
network.train(trainData)

Test the network
testData.createData()
result = network.test(testData)

TestCrossParameters Class
The TestCrossParameters class offers a simpler way of running tests.
TestCrossParameters lets you describe a set of tests and then runs them for you.
TestCrossParameters tests an HTM Network by computing performance measurements
such as classification accuracy as one or more network or data set parameters change.
TestCrossParameters takes advantage of the NetInterface and DataInterface APIs. It
allows you to run tests on the parameters of your network and data classes. If you
instantiate TestCrossParameters with your data and network objects as parameters,
NetExplorer tests all combinations of these parameters in an efficient way. Optionally, if
you have multiple CPUs or computers available, NetExplorer can also run these tests in
parallel. Instead of having to write new procedural code for each test you want to run, you
can simply describe the test.

Prepare the data and network
trainData = Example2Data()
testData = Example2Data()
network = Example2Network()

Give them all prefixes so they don't write over each other's files
trainData['prefix']= 'train_'
testData['prefix']= 'test_'
network['prefix'] = 'network_'

Describe the parameters we want to test
testParams = []
We want to test the spatial noise in the test data
testParams.append(Parameter('spatialNoise', owner='testData', minval=0.0,
maxval=0.3, numSteps=10))
We want to test the thermal noise in the training data
testParams.append(Parameter('thermalNoise', owner='trainData', minval=0.0,
maxval=1.0, numSteps=10))

Optionally, use a selection method to avoid testing certain parameter
combinations.
def mySelectionMethod(trainData, network, testData):

Advanced NuPIC Programming

102| Appendix B Numenta NetExplorer

"""For no good reason (just an example), tell the TestCrossParameters not
to test if the thermal noise and the spatial noise are the same."""

if trainData['thermalNoise']==testData['spatialNoise']:
don't test this case

return False
do test this case
return True

Run the experiment
test = TestCrossParameters(trainData, testData, network, params,

constraintFunction=mySelectionMethod) filename='results.pkl')
test.runTest()
test.plotResults()

We can easily load the results and examine them more closely
test2 = Test()
test2.loadResults('results.pkl')
test2.plotResults()
firstResult = test2.results[0]
print firstResult.results['accuracy']
testNetwork = firstResult.configuration['network']

You can see from this example that you only need to provide some setup code and the
parameters you want to test. You don’t need to write any iteration or plotting code
yourself. Instead, you write declarative code that describes the parameter values to test. In
addition, TestCrossParameters automatically takes care of optimizing the iteration so
that it runs multiple test sets without needlessly retraining the HTM Network.

TestCrossParameters Options
The NetExplorer framework supports constraints that you can add to the testing regime.
A constraint acts a a filter that discards certain combinations of parameters from the set
of tests that TestCrossParameters runs.
When you use TestCrossParameters, you can vary parameters in two ways:

❍ Specify minimum and maximum values and the number of steps, as in the example
above.

❍ Explicitly specify a set of sample points over which to iterate.

Classes Overview
The following classes are included with NetExplorer:

See the Waves sample program for examples of TestCrossParameter use.

Class Description
TestCrossParameters Tests every value in the cross product of parameters.

DataInterface Base class that defines methods useful for a dataset.

 Advanced NuPIC Programming

Using Numenta NetExplorer | 103

Using Your Own DataInterface
If you want to analyze your own data set:

1. Define a data class that inherits from netexplorer.DataInterface

2. Override the following methods:

— createData() — Method that creates the data, for example, reads the source data
files or calls scripts that generate the data.

— visualizeData() — Method that plots the data. You can use Data.easyPlot2D or
Data.easyPlot3D inside this method.

— getData() — It might be helpful to write a getData() method as well. Having a
getData() method makes it easy to plot data along with other information, such as
test results.

3. Optionally override cleanup(), a method that allows your derived class to clean up
any data files upon completion of the test.

If you already have data, you just wrap it up in a class that derives from DataInterface.
You might want to add a parameter in the new class describing where on disk to find the
data, so you can easily switch data sets. For example, the following code fragment deals
with data on disk:

class MyData(netexplorer.DataInterface):
 def __init__(self):
 netexplorer.DataInterface.__init__(self)
 self.addParam('dataLocation',default='standard data location')
 def createData(self):
 # nothing to do here; we already have our data
 def getData(self):
 # return our data in a form conducive to plotting

class MyNetwork(netexplorer.NetInterface):
 def train(self,data,...):
 # read and use the data we already have, from data['dataLocation']
 def test(self,data,...):

NetInterface Base class that defines methods useful for an HTM Network, such as training and testing.

Parameter Encapsulates parameters with a value, type, range, owner, and other useful parameters.

Parameterized A parameterized object, the base class for both DataInterface and NetInterface.

TestResult A data structure encapsulating the results of a single test. TestResult has a configuration
(the Parameterized objects used to create it) and a set of results.

Test A generalized test. If you want to run a test more general than TestCrossParameters, you
can subclass Test. Test has some useful helper methods for working with intermediate and
final results.

Class Description

The DataInterface implementations of these methods are simply empty
placeholders.

Advanced NuPIC Programming

104| Appendix B Numenta NetExplorer

 # read and use the data we already have, from data['dataLocation']

Using Your Own NetInterface
To use an HTM Network of your own design, define a NetInterface class that inherits
from netexplorer.NetInterface and overrides the following methods:

❍ createNetwork() — Creates the network.

❍ train(data,np,hosts) — Trains the created network on the specified data set. If you
want to run tests in parallel (see below for advanced use of TestCrossParameters),
use np (the number of node processors) and hosts (the computer hostnames to run
on). If you are not running tests in parallel, you can ignore these parameters.

❍ test(data,uniqueID,np,hosts) — Tests the trained network on the specified data
set. Just like in train(), you should use the np and hosts parameters when creating a
session so that NetExplorer's parallel tools can function correctly on this HTM
Network. If you are planning to run parallel tests, incorporate the value of uniqueID
into the names of any files this method creates. That way, NetExplorer will not
overwrite files when several tests are run in parallel.

This method should return a Python dictionary of the test results. Normally, including
accuracy in this dictionary is recommended. You can also include other
measurements of interest, such as trainingTime, networkSize, and so on. Because
TestCrossParameters saves only the results listed in its resultsToSave parameter, you
can later choose which results to save when running TestCrossParameters, so
returning unnecessary results here does not use up disk space. Instead, results are
saved only if you find them useful to save.

The saved results file (results.pkl) stores the accuracy for each test, as well as the
parameter values in that test. By default, the network measurements computed are just
classification accuracy, but the framework supports any type of measurement, such as
training time.
When it has run a test and gotten a result, TestCrossParameters saves not only the result,
but also a copy of the netInterface that was involved in the test. (That way, you can
easily recreate the test.) However, because the netInterface may well have lots of stored
data, which you likely do not want to save, TestCrossParameters calls
netInterface.savable(), which is inherited from class Parameterized, to get a copy of
the object with everything but the parameters stripped out. Then
netInterface.savable() calls your class's constructor with no arguments to get a clean
copy of the object.
You must either override the netInterface.savable() method or override the
constructor to succeed with no arguments. Otherwise, TestCrossParameters fails, when
it tries to save the results.

Because NetExplorer relies on Python's pickle library to transfer and store objects, the
createNetwork(), train(), and test() methods must return only pickleable objects. If
these methods return any objects that cannot be pickled, using TestCrossParameters
signals an exception and fail

 Advanced NuPIC Programming

Using Numenta NetExplorer | 105

Parameterized Tools
You can use the Parameterized tools when you create your data and network. For any
configuration parameter, add a Parameter object by calling addParam(). You can then
access (and set) the parameter value by calling self['parameter_name']. Declaring your
Parameter instances in this way allows you to run tests over their values by using a
TestCrossParameters test.
You can use the Parameterized tools when you create your data and network. For any
configuration parameter, add a Parameter object by calling addParam. Its value can be
accessed via self['parameter_name']. You use Parameters in the same way in your
DataInterface class.

from nupic.analysis.netexplorer import NetInterface, DataInterface

class MyNetwork(NetInterface):
 def __init__(self):
 NetInterface.__init__(self)
 self.addParam('maxDistance', default=0.05)
 self.addParam('nodesPerLevel', default=[16, 4, 1])

 def createNetwork(self, data):
 # Our configuration depends on these parameters, and
 # might also depend on the data's parameters
 self.buildNetwork_(self['maxDistance'], self['nodesPerLevel'],
 data['vectorLength'])

 def train(self, data, np=1, hosts=[]):
 # Use a nupic session to train the network
 doTrain_(data, np, hosts)

 def test(self, data, np=1, hosts=[]):
 # Use a nupic session to test the network
 (acc, beliefVector) = doTest_(data, np, hosts)
 return {'accuracy': acc, 'beliefs': beliefVector}

class MyData(DataInterface):
 def __init__(self):
 self.addParam('vectorLength', default=32)
 self.addParam('noiseLevel', default=0.25)

 def createData(self):
 self.genDataFromParams_(self['vectorLength'],
 self['noiseLevel'])
 self.writeDataToFile_()

 def visualizeData(self):
 self.genDataFromParams_(self['vectorLength'],
 self['noiseLevel'])
 self.easyPlot3D(self.getData(), title='My Data')

Advanced Exploration
Numenta NetExplorer also has some more advanced features. Here are some tips:

❍ Long tests might be interrupted, for example by a power outage.
TestCrossParameters automatically performs checkpointing so that intermediate

Advanced NuPIC Programming

106| Appendix B Numenta NetExplorer

results will not be lost. If you run a test, a checkpoint file with the extension
.checkpoint will be created. If for some reason your test is interrupted, you can
restore that checkpoint file by setting the restoreCheckpoint parameter to true, as
follows:

test = TestCrossParameters(trainData, testData, network, testParameters,
 filename='results.pkl', restoreCheckpoint=True)

❍ If you are working with a cluster, or even just a dual-core CPU, you might benefit
from NetExplorer's built-in parallelization features. You can use the hosts parameter
of TestCrossParameters for this purpose. See Running NetExplorer Tests in Parallel
on page 108

❍ NetInterface.test() can produce lots of output, which might clog your disk or
network if you saved it all. Therefore, TestCrossParameters saves only selected
results, so that NetInterface.test() can be written generally to output any results
that might be remotely interesting, but you can still get only the results you need for
any particular test. By default, TestCrossParameters saves only the accuracy.
However, you can change the saved results by specifying an array of results to save.
For example:

test = TestCrossParameters(..., resultsToSave=['accuracy',
'other_result1', 'other_result2'])

When you pass in the string 'all', instead of an array of strings,
TestCrossParameters saves all parameters.

❍ Using Test.advancedPlot, you can plot any function of your test results, not just the
accuracy versus the parameter values. You can write a function that takes as input a
TestResult object and returns a list of data points, as shown below. The resulting data
points are then plotted as usual.

def errorDataFunction(result):
accuracy = result.results['accuracy']
noise1 = result.configuration['testData']['spatialNoise']
noise2 = result.configuration['testData']['thermalNoise']
return [1 - accuracy, # plot error, not accuracy

noise1+noise2] # versus a measure of noise
test.advancdPlot(myDataFunction)

❍ You might want to configure an HTM network from the command line, either by
hand or in a script. The built-in getopt module is the standard Python tool for this,
and the Parameterized class (the parent of both DataInterface and NetInterface)
has methods for easily working with getopt. In particular, getoptOptions and
loadGetoptOptions can be useful. They allow the Parameterized object to have its
parameters set via Getopt options. For example:

try:
tell Getopt to use the data's parameter names as options

 Advanced NuPIC Programming

Using Numenta NetExplorer | 107

options,args = getopt.getopt(sys.argv[1:],'', data.getoptOptions())
except getopt.GetoptError, (msg,opt):

print 'Error:',msg
sys.exit(2)

Use Parameterized.loadGetoptOptions to get parameters from getopt
#data structure

data.loadGetoptOptions(options)

❍ Suppose that some of your parameters need to change together. For instance, suppose
that you want to test a parameter called param1 that always needs to be the same in
both the training and test data. The way to do this with TestCrossParameters is to use
the constraintFunction parameter. You pass in a function that takes training data, a
network, and test data, and returns 'True' only for those combinations that you want
to test. In the example with 'param1' given above, you could do it this way:

testParameters = [Parameter('param1', owner='trainData', samplePoints=[1,2,3]),
Parameter('param1', owner='testData', samplePoints=[1,2,3])]

def myConstraintFunction(trainData, network, testData):
return trainData['param1']==testData['param1']

test = TestCrossParameters(trainData, testData, network, testParameters,
filename='results.pkl', constraintFunction=myConstraintFunction)

Advanced NuPIC Programming

108| Appendix B Numenta NetExplorer

Running NetExplorer Tests in Parallel

Suppose that you have many tests to run (e.g. testing two parameters at 10 points each:
that's 100 tests), and more than one CPU available, for example a dual-core processor, or
even a cluster of computers. NetExplorer includes tools for running tests on as many
cores as you have available, so that you finish the tests much faster.
In particular, you can use the TestCrossParameters hosts parameter to specify the CPUs
you have available. This parameter lists the different host computers to run tests on. You
pass in a list of the available computers and the number of node processors to run, as
follows:
test = TestCrossParameters(...,
 hosts=[{'np':1,'hosts':['computer1']},
 {'np':1,'hosts':['computer2']}])

For a dual-core computer, you would use a list like this:
test = TestCrossParameters(...,
 hosts=[{'np':1,'hosts':['localhost']},
 {'np':1,'hosts':['localhost']}])

That list of dictionaries contains some extra complexity for a reason. Suppose that you
want to run each test on more than one processor. Each of the inner lists describes the set
of hosts for a single test. So, to run two tests, each with 8 node processors on two
machines, make this call:
test = TestCrossParameters(...,
 hosts=[{'np':8,'hosts':['computer1','computer2']},
 {'np':8,'hosts':['computer3','computer4']}])

Parallel HTM Networks
If you wish to perform training or testing on multiple hosts, both train() and test()
must receive a host parameters. Each time the function is called, will get the contents of
one of the above dictionaries.
There are two ways to get train() and test() to use this host information correctly.

❍ The first, and easiest way, is to use nupic.network.SimpleHTM. HTM Networks
created that way automatically take care of these parameters.

❍ If your network is more complicated than a SimpleHTM allows, and you explicitly create
nodes and sessions, you need to specify the hosts parameter explicitly in a
SessionServerDistribution. Look at the code for SimpleHTM for an example.

When writing your NetInterface and DataInterface classes, be sure to use the value of the
parameter prefix in the names of any files they create. That way, when NetExplorer creates
multiple copies of networks and data sets, they will not overwrite each other’s files.
Similarly when writing your NetInterface.test() function, you should use the uniqueID
parameter in the names of any files you create. That way, if multiple tests are run at the same
time, they won't overwrite each other.

 Advanced NuPIC Programming

Running NetExplorer Tests in Parallel | 109

When you run tests in parallel, NetInterface.train() and NetInterface.test() will be
run on copies of the objects rather than on the objects themselves. In fact, they run in
separate processes, so that all the objects they can see are copies. As a result, you cannot
change global state from these methods. Instead, override
NetInterface.postTrainUpdate() and NetInterface.postTestUpdate() to change
global state.

Advanced NuPIC Programming

110| Appendix B Numenta NetExplorer

 Advanced NuPIC Programming

| 111

Glossary

B

Belief
Within the context of an HTM, a belief is the probability
distribution on a cause or set of causes. Specifically, belief refers
to the distribution over a set of potential causes once all
top-down, bottom-up and lateral evidence has been considered.

Bindings
Exposure to a target language of APIs originally written
and implemented in a (different) source programming
language. For example, Numenta Tools has Python
bindings to a C++ library. In this case, Python is
considered the target language, and C++ is the source.

Bundle
Collection of files stored in a single directory hierarchy. On
some operating systems, the bundle can be made to appear
as a single file. In Numenta Tools, a session bundle holds
all files associated with a single conceptual NRE session.

C

Category
The top-level, distinct class to which entities or concepts
belong.

Category file
A category file classifies training data.

Cause
An object in the world. From the HTM perspective, what’s
important about the objects in the world is that they have
persistence, that is, they exist over time. A cause is not
necessarily a physical object.

Classification
Classification is first performed during training: the HTM
system is presented with a category file, which maps
training data to categories. After that, the HTM system is
presented with new data and can decide on the closest
category match for each pattern.

Client code
Code that is accessing an API. Client code is not part of the
API or its implementation. Client code includes software
developed internally by Numenta engineering or QA
departments, or may be developed externally by customers.

Cluster
Set of hosts networked together using Ethernet or other
networking protocols.

Coincidence
A coincidence is the noteworthy alignment of two or more
events or circumstances without obvious causal
connection. In the context of an HTM Network, a specific
combination of patterns that are likely to occur together at
one point in time.

Coincidence Detection
The process of detecting frequently occurring coincidences
among input patterns.

Coincidence Matrix
A matrix of the coincidences the HTM system found after
performing learning at one level.

Confusion matrix
The confusion matrix allows you to see how many items
were assigned to which category. You run the
NetConfusion.py script to get a confusion matrix.

Advanced NuPIC Programming

112| Glossary

CPU
One-processor core. A host can have multiple CPUs per
host or per chip. For example, a host with two dual-core
chips has a total of four CPUs.

E

Effector
Effectors are nodes that receive the output of the classifier
node as input. The effector might send the output to a file
or hardware device.

F

Fan-in
Fan-in refers to the number of outputs leading to one input
of a node.

Fan-out
Fan-out refers to the number of outputs going from a node
to the inputs of other nodes.

G

Geometry
The network geometry specifies the number of levels and
for each level the node parameters such as fan-in that
determine how nodes are linked.

Group
A set of coincidence patterns that are likely to occur close
together in time.

Grouping
Process of creating groups.

H

Host
Physical computer containing one or more CPUs, hard
drive, and power supply.

HTM
Hierarchical Temporal Memory. Theory describing the
structural and computational properties of the neocortex.

HTM Network
A set of nodes, sensors, and effectors connected to
perform a specific function. Serve as the HTM structure
that is being computed by the NRE.

HTM System
A complete system for running HTM Networks consisting
of software and hardware components.

I

Inference
Inference is the act or process of deriving a conclusion
based solely on what one already knows. In the context of
the Numenta platform, it can mean that during training,
nodes can infer for example, the likelihood that a certain
item is the next item in a sequence based on other
sequences it has seen. After the HTM Network has been
trained, you can feed it new data and the HTM can infer
the corresponding category (as a statistical pattern).

Input
Any node can receive input from all nodes to which it is
linked. A node can have multiple inputs.

Invariance
Occurs when a belief is unchanged by a wide range of
real-world transformations, often those which cannot be
specified in concrete mathematical terms.

 Advanced NuPIC Programming

Glossary | 113

L

Launcher
The Launcher process is part of the NRE. The process
runs only briefly as it launches the NRE. As a rule, users
don’t interact with the launcher directly.

Learning
A node is in the learning state when it is receiving inputs,
measuring the statistics of the inputs, and making
modifications to its internal structures to represent the
statistics of the inputs.

Learned State
Portion of a node’s static state that is updated when
learning occurs.

Link
Connection between nodes in an HTM Network.

M

maxDistance
The maxDistance parameter sets the maximum Euclidean
distance at which two input vectors are considered the
same during learning. When you set maxDistance to a
higher number, you’re more likely to get matches even if
the noise-level is high. However, if maxDistance is too
high, items that actually belong to different groups can end
up in the same group.

N

NetExplorer tool
Numenta tool that allows you to test your HTM Network
with different parameters and data and to see the results
using gnuplot.

Network
The Python Network class implements an HTM Network.

Node
A node is the basic computational unit of an HTM
Network. Node types include sensor, effector, and learning
node. A learning node learns and represents the spatial and
temporal statistics of the inputs to which it is exposed.

Node Input
See Input

Node Output
See Output

NP (Node Processor)
Software component that is responsible for running and
scheduling a portion of an HTM Network.

NuPIC
Acronym for Numenta Platform for Intelligent
Computing.

NRE
Numenta Runtime Engine. Software executables required
for running HTM Networks. The NRE consists of the NP
and the Supervisor.

NSAP (Numenta Supervisor Access Protocol)
A sockets-based protocol for communicating with the
Numenta Supervisor. NSAP is a component of the runtime
API. Most developers don’t use this protocol directly.

Numenta Network File Format
When you save a network after constructing it, or when
you save a trained network, it is saved in Numenta
Network File Format. Files in this format are in XML. If
you modify an NFF file explicitly, it might no longer load.
Use the tools for modification instead.

Numenta Platform for Intelligent Computing
Full name for the Numenta software platform. Includes the
runtime engine and Numenta tools. Abbreviated NuPIC.

Advanced NuPIC Programming

114| Glossary

O

Output
The node output is the part of the node’s state that’s
accessible by other nodes. Outputs can be arbitrary data
types. Each node can have multiple named outputs. When
a node is in inference node, it makes outputs available to
other nodes.

P

Phase
A node’s phase determines when the NRE executes it. You
can specify the phase for each level during node creation.

Pipeline Scheduler
The pipeline scheduler is a high-performance node
scheduler that can be used with feed-forward networks.
The pipeline scheduler double-buffers node outputs and
pipelines computation so that all nodes can be computed
concurrently, making the pipeline scheduler ideal for
multiprocessing.

Plugin
A plugin (or plug-in) is a computer program that interacts
with a main application (a web browser or an email
program, for example) to provide a certain, usually very
specific, function. Numenta supports a node plug-in API
that allows licensed users to create custom nodes.

Process
Single instance of a running program. Occupies system
memory for program code, variables and objects.

R

Region
Regions are groups of nodes that all have the same
configuration. Regions simplify common network
topologies. Within a region, parameters cannot vary.

Runtime Engine
See NRE

S

Scheduler
The scheduler you choose determines the order in which
nodes are executed. The basic scheduler uses phases.
Advanced users can work with the pipeline scheduler in a
multiprocessing environment.

Sensor
Input to HTM Networks. Sensors interface to external
files, hardware devices, etc. and format data for input to
other nodes.

Server
See Host.

Session
A session includes all input data, output data, and
interaction involved in a single use of the NRE. You
can create and modify a session using the Python
Session interface.

Session Bundle
See Bundle.

Static State
Portion of the node state that is independent of the
runtime state of the system.

Supervised Learning
During supervised learning, the HTM Network is fed data
and corresponding category information to learn the
mapping between data and categories. After that, the HTM
Network can perform inference on new data.

Supervisor
Portion of the NRE responsible for coordinating one
HTM Network, and for communicating with external
applications (e.g. the tools).

 Advanced NuPIC Programming

Glossary | 115

Supervisor command set
Portion of the NRE responsible for coordinating one
HTM Network and for communicating with external
applications (e.g. the tools).

Supervisor Command
Text commands for controlling the Supervisor. The
command set is a subset of the API.

T

Time Adjacency Matrix
The system forms a time adjacency matrix by observing
coincidences over time. The system uses that matrix to
group the coincidences into temporal groups.

Tools (Numenta Tools)
Collection of software libraries, language bindings, and
applications. Numenta tools provide access to the NRE,
offer additional HTM related features, and are used by
HTM applications.

Training
To train your HTM Network, you invoke the NRE with
the network configuration and the training data. During
training, the nodes in the HTM Network perform learning
and inference.

U

Unsupervised Learning
During unsupervised learning, you feed data to the system
without providing category information.

Visualizer Tool
The Numenta Visualizer tool allows you to examine a node
to analyze its performance. It generates an HTML page for
each node in the network, displaying groups and
coincidences as well as general statistics.

Advanced NuPIC Programming

116| Glossary

 Advanced NuPIC Programming

| 117

Index

Numerics

1-d region 30
2-d region 30

B

basic scheduler
example 59
multiple NPs 59

bitworm
learning 46

bitworm example 84
bottomUpOut node output 28
bundles 49, 50

example 49

C

cluster 69
clustered environment 69
clusters

run on cluster 77
clusters 76
common link types 29
customer support 12

D

DataInterface class 103
different configurations on multi-CPU machines 69
different schedulers with multiple NPs 59

E

examples
bitworm 84
pictures 92

exception response 21

F

fully trained node 34

H

hardware configurations 68
HTM Network

profiling 63
running 17, 45

HTM Network example 33
HTM Network files

format 39
HTM Networks

level skipping 62
loading 17
parallel 108

I

implementation 84, 86
inference 31

introduction 34
inputs 26, 27
interacting with sessions 53
interaction example 20
introduction 14, 66

J

jobs
definition 113

L

launch.py file 56
launching on a remote host 78
learning 31

bitworm example 46
introduction 33
supervised 32
unsupervised 32

learning nodes
parameters 36

level-skipping HTM Network 62
link policies 29
links 26, 27, 28

common types 29
commonly used links 28

loading an HTM Network 17
log files 55

Advanced NuPIC Programming

118| Index

M

maxDistance parameter
example 37

MPI 67
multi-CPU machines 68
multiple NPs 59, 71, 76

basic scheduler 59
pipeline scheduler 61

multiple NRE instances 70

N

NetExplorer 100
classes 102
DataInterface class 103
NetInterface class 104
parameterized tools 105
running tests in parallel 108

NetExplorer basics 100
NetExplorer tests 108
NetInterface class 104
network file format 39
node content 53
node processors 17
nodes

bottomUpOut 28
fully trained 34
inputs 26, 27
links 26, 27
outputs 26, 27
parameters 36
pass-through 62

NPs 17
multiple 59, 71, 76
multiple NPs 76

NRE
multiple instances 70
Supervisor 16

Numenta network file format 39

O

official results
definition 114

offset 29
open MPI 67
output information 55
outputs 26, 27

P

parallel HTM Networks 108
parameters 36
pass-through nodes 62
performing inference at the lower level and learning at the

higher level 47

Pictures
Demo 96
GUI 96

Pictures Demo 96
pictures example 92
pipeline scheduler 62

example 61
multiple NPs 61

problem definition 84, 85

R

regions
1-d 30
2-d 30

remote host 79
remote hosts 78
remote servers 50
running multiple NRE instances 70
running one NRE 71
running the HTM Network 17, 45
RuntimeResponse structure 20

S

scheduler
basic 59

schedulers
overview 58
pipeline 62
supported schedulers 58

scripting commands 55
server cluster 69
session

on remote host 79
starting 44

Session API 44
session bundle example 49
session bundles 49

example 49
session commands

troubleshooting 55
session startup 19
session_log files 55
SessionConfiguration object

methods 81
sessions 19

interactions 53
introduction 19
run on cluster 77
starting on cluster 76

SimpleFanin 29
SimpleHTM

multiple NPs 76
SimpleSensorLink 29
single-CPU machine 68
SingleLink 29
startup 19
startup sequence 17
structure of a trained node 34
supervised learning 32
Supervisor 16

 Advanced NuPIC Programming

Index | 119

Supervisor/session interaction 20
support, contacting 12

T

technical support 12
TestCrossParameters class 101
TestCrossParameters options 102
timeout response 21
training 31
training process 43
troubleshooting 55

node content examination 53
output information 55
session commands 55

U

unconnected response 21
unsupervised learning 32

W

waves example 85

Advanced NuPIC Programming

120| Index

	Advanced NuPIC Programming
	Contents
	Figures
	Preface
	Scope of Document
	Document Overview
	Related Documentation
	Conventions
	Document History
	For More Information

	1 Software Components
	Introduction
	Numenta Tools
	Numenta Runtime Engine (NRE)
	Runtime API

	NRE Supervisor Process
	NRE Node Processors (NPs)
	Startup Sequence
	Loading an HTM Network
	Running the HTM Network

	Sessions and NRE Supervisor
	What is a Session?
	Session Startup
	Supervisor/Session Interaction
	Interaction Example

	Understanding Numenta APIs

	2 Developing HTM Networks: Advanced Topics
	NuPIC Node Types
	Getting Node Help
	Available Node Types

	Node Inputs, Node Outputs and Links
	Node Inputs and Output
	Links
	Link Types
	Regions

	Inside a Learning Node: How Learning and Inference Happen
	Related Documentation
	Learning and Inference During Training
	Supervised and Unsupervised Learning
	What Nodes Do During Learning
	What Nodes Do During Inference

	Affecting Learning Node Behavior With Node Parameters
	Parameters in Both Learning Nodes
	Parameters in SpatialPoolerNode
	Parameters in TemporalPoolerNode

	Working with HTM Network Files
	Numenta .xml Files (Numenta Network File Format)
	Manipulating Trained Network Files
	Compression Support for HTM Network Files

	3 Running HTM Networks With Sessions
	Running HTM Networks: Options
	Understanding the Training Process
	Using the Session API to Run Your HTM Network
	Starting the Session
	Running the HTM Network

	Sessions and Session Bundles
	What RuntimeNetwork.run() Does
	Accessing Session Information at Runtime
	Interacting with Sessions
	Examining Node Content

	Look At Output Information
	Examining Scripting/Session Commands
	Log Files
	The launch.py File

	4 Scheduling Node Processing
	Understanding Scheduling
	Scheduler Overview
	Supported Schedulers

	Different Schedulers with Multiple NPs
	Using the Basic Scheduler with Multiple NPs

	Using the Pipeline Scheduler With More Than One NP

	Profiling and Load Balancing

	5 Using the Numenta Runtime Engine: Advanced Topics
	Introduction and Terminology
	Terminology
	Singe-NP Process and Multiple NPs

	NRE Process Structure with Multiple NPs
	Hardware Configurations

	Single-CPU Machine

	Multi-CPU Machine

	Cluster
(Unix-like Systems Only)

	Running in Parallel: Experiment Mode

	Running in Parallel: Large Problem Mode

	Using RuntimeNetwork in Large Problem Mode
	Using Sessions in Large Problem Mode
	Using TrainBasicNetwork() in Large Problem Mode

	Setting up a Cluster to Run NuPIC
	Introduction to Cluster Setup
	Requirements
	Cluster Performance Bottlenecks and Host Hardware

	How to Use NuPIC in Complex Configurations

	Using Multiple NPs

	Starting a RuntimeNetwork or a Session that Runs on a Cluster

	Launching on a Remote Host

	SessionConfiguration Object Methods

	A Examples
	Bitworm Example
	Problem Definition
	Implementation
	Exploration and Verification
	Notes
	See Also

	Waves Example
	Problem Definition
	Implementation
	See Also

	Net_Construction Examples
	Example Scripts

	Flu Example
	Problem Definition
	Implementation
	Learning from the Example

	Speech Example
	Problem Definition
	Speech Data
	HTM Network Structure
	Running the HTM Network

	Pictures Example
	Problem Definition
	Implementation
	Exploration and Verification
	Experimenting Using the Pictures Demo GUI

	B Numenta NetExplorer
	Using Numenta NetExplorer
	NetExplorer Basics
	TestCrossParameters Class
	TestCrossParameters Options
	Classes Overview
	Using Your Own DataInterface
	Using Your Own NetInterface
	Parameterized Tools
	Advanced Exploration

	Running NetExplorer Tests in Parallel
	Parallel HTM Networks

	Glossary
	Index

