
Which Free Lunch Would You Like Today,
Sir?

Delta hedging, volatility arbitrage and optimal
portfolios

Riaz Ahmad and Paul Wilmott

In this lecture. . .

• Volatility arbitrage
• How to hedge

• Expected profit
• Variance of profit
• Optimizing a portfolio
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Introduction

In this lecture we examine the profit to be made hedging options

that are mispriced by the market.

• This is the subject of how to delta hedge when your estimate

of future actual volatility differs from that of the market as mea-

sured by the implied volatility (Natenberg, 1994).

Since there are two volatilities in this problem, implied and actual,

we have to study the effects of using each of these in the classical

delta formula (Black & Scholes, 1973).
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We’ll see how you can hedge using a delta based on either actual

volatility or on implied volatility.

• Neither is wrong, they just have different risk/return profiles.
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Part of what follows repeats the excellent work of Carr (2005)

and Henrard (2001). Carr derived the expression for profit from

hedging using different volatilities. Henrard independently de-

rived these results and also performed simulations to examine

the statistical properties of the possibly path-dependent profit.

He also made important observations on portfolios of options

and on the role of the asset’s growth rate in determining the

profit.

This lecture extends their analyses in several directions.

Some of the work in this lecture has been used successfully by a

volatility arbitrage hedge fund.
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Overview on the lecture

The lecture will consist of several main parts:

• First we set up the problem by explaining the role that volatil-

ity plays in hedging.

• We look at the mark-to-market profit and the final profit
when hedging using actual volatility.

• We then examine the mark-to-market and total profit made
when hedging using implied volatility. This profit is path

dependent. We briefly repeat the analyses of Carr (2005)

and Henrard (2001).
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Towards the end of the lecture we focus on the latter case of

hedging using implied volatility, which is the more common mar-

ket practice.

• Because the final profit depends on the path taken by the
asset in this case we look at simple statistical properties of

this profit. We derive a formula for the expected total profit

and a formula for the variance of this profit.

• We then consider portfolios of options, and again find closed-
form formulas for the expectation and variance of profit.
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• To find the full probability distribution of total profit we

could perform simulations (Henrard, 2001) or solve a three-

dimensional differential equation. We outline the latter ap-

proach. This is to be preferred generally since it will be

faster than simulations, therefore making portfolio optimiza-

tions easier to perform.

• Next we outline a portfolio selection method based on expo-
nential utility.

• Finally, we consider portfolios of options on many underly-
ings.

Technical details are contained at the end.
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Before we start. . .
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Distributions of the logarithms of the VIX and the rolling 30-day realized SPX volatility, and

the normal distributions for comparison.

Above is a simple plot of the distributions of the logarithms of
the VIX and of the rolling 30-day realized SPX volatility using
data from 1990 to mid 2005. The VIX is an implied volatility
measure based on the SPX index and so you would expect it and
the realized SPX volatility to bear close resemblance.
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However, as can be seen in the figure, the implied volatility VIX

seems to be higher than the realized volatility.

Both of these volatilities are approximately lognormally distributed

(since their logarithms appear to be Gaussian), especially the re-

alized volatility. The VIX distribution is somewhat truncated on

the left.

The mean of the realized volatility, about 15%, is significantly

lower than the mean of the VIX, about 20%, but its standard

deviation is greater.
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Implied versus actual, delta hedging but which volatility?

• Actual volatility is the amount of ‘noise’ in the stock price, it is
the coefficient of the Wiener process in the stock returns model,
it is the amount of randomness that ‘actually’ transpires.

• Implied volatility is how the market is pricing the option cur-
rently. Since the market does not have perfect knowledge about
the future these two numbers can and will be different.

Imagine that we have a forecast for volatility over the remaining
life of an option, this volatility is forecast to be constant, and
further assume that our forecast turns out to be correct.

Let’s buy an underpriced option and delta hedge to expiry. But
which delta do you choose? Delta based on actual or implied
volatility?
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Scenario: Implied volatility for an option is 20%, but we believe

that actual volatility is 30%.

Question: How can we make money if our forecast is correct?

Answer: Buy the option and delta hedge.

But which delta do we use?
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We know that

∆ = N(d1)

where

N(x) =
1√
2π

∫ x

−∞
e−

s2
2 ds

and

d1 =
ln(S/E) +

(
r+ 1

2σ
2
)
(T − t)

σ
√
T − t

.

We can all agree on S, E, T − t and r (almost), but not on σ.

So should we use σ = 0.2 or 0.3?

In what follows we use σ to denote actual volatility and σ̃ to

represent implied volatility, both assumed constant.
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Case 1: Hedge with actual volatility, σ

By hedging with actual volatility we are replicating a short posi-

tion in a correctly priced option.

The payoffs for our long option and our short replicated option

will exactly cancel.

The profit we make will be exactly the difference in the Black–

Scholes prices of an option with 30% volatility and one with 20%

volatility.
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If V (S, t;σ) is the Black–Scholes formula then the guaranteed

profit is

V (S, t;σ)− V (S, t; σ̃).

But how is this guaranteed profit realized? Let’s do the math

on a mark-to-market basis.
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In the following, superscript ‘a’ means actual and ‘i’ means im-

plied, these can be applied to deltas and option values. For ex-

ample, ∆a is the delta using the actual volatility in the formula.

V i is the theoretical option value using the implied volatility in

the formula. Note also that V , ∆, Γ and Θ are all simple, known,

Black–Scholes formulas.
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The model is the classical

dS = µS dt+ σS dX.

Now, set up a portfolio by buying the option for V i and hedge

with ∆a of the stock.
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The values of each of the components of our portfolio are shown

in the following table.

Component Value
Option V i

Stock −∆a S

Cash −V i+∆a S

Portfolio composition and values, today.
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Leave this hedged portfolio overnight, and come back to it the

next day. The new values are shown in the next table. (We have

included a continuous dividend yield in this.)

Component Value
Option V i+ dV i

Stock −∆a S −∆a dS

Cash (−V i+∆a S)(1 + r dt)−∆aDS dt

Portfolio composition and values, tomorrow.
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Therefore we have made, mark to market,

dV i −∆a dS − r(V i −∆a S) dt−∆aDS dt.

Because the option would be correctly valued at V a then we have

dV a −∆a dS − r(V a −∆a S) dt−∆aDS dt = 0.
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So we can write the mark-to-market profit over one time step as

dV i − dV a+ r(V a −∆a S) dt− r(V i −∆a S) dt

= dV i − dV a − r(V i − V a) dt = ert d
(
e−rt(V i − V a)

)
.
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That is the profit from time t to t+ dt. The present value of

this profit at time t0 is

e−r(t−t0)ert d
(
e−rt(V i − V a)

)
= ert0 d

(
e−rt(V i − V a)

)
.

So the total profit from t0 to expiration is

ert0
∫ T

t0
d
(
e−rt(V i − V a)

)
= V a − V i.

This confirms what we said earlier about the guaranteed total

profit by expiration.
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We can also write that one time step mark-to-market profit (us-

ing Itô’s lemma) as

Θi dt+∆i dS+ 1
2σ
2S2Γi dt−∆a dS − r(V i −∆aS) dt−∆aDS dt

= Θi dt+ µS(∆i −∆a) dt+ 1
2σ
2S2Γi dt

−r(V i − V a) dt+ (∆i −∆a)σS dX −∆aDS dt

= (∆i −∆a)σS dX + (µ+D)S(∆i −∆a) dt+ 1
2

(
σ2 − σ̃2

)
S2Γi dt

(using Black–Scholes with σ = σ̃)

= 1
2

(
σ2 − σ̃2

)
S2Γi dt+ (∆i −∆a) ((µ− r+D)S dt+ σS dX) .
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• The conclusion is that the final profit is guaranteed (the differ-
ence between the theoretical option values with the two volatil-
ities) but how that is achieved is random, because of the dX
term in the above.

On a mark-to-market basis you could lose before you gain.

• Moreover, the mark-to-market profit depends on the real drift
of the stock, µ.

This is illustrated in the next figure. The figure shows several
simulations of the same delta-hedged position.

Note that the final P&L is not exactly the same in each case
because of the effect of hedging discretely, we hedged ‘only’ 1000
times for each realization. The option is a one-year European
call, with a strike of 100, at the money initially, actual volatility
is 30%, implied is 20%, the growth rate is 10% and interest rate
5%.
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P&L for a delta-hedged option on a mark-to-market basis, hedged using actual volatility.
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When S changes, so will V . But these changes do not cancel

each other out. From a risk management point of view this is

not ideal.

• There is a simple analogy for this behavior. It is similar to

owning a bond. For a bond there is a guaranteed outcome, but

we may lose on a mark-to-market basis in the meantime.
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Case 2: Hedge with implied volatility, σ̃

Compare and contrast now with the case of hedging using a delta

based on implied volatility.

• By hedging with implied volatility we are balancing the ran-
dom fluctuations in the mark-to-market option value with the

fluctuations in the stock price.

The evolution of the portfolio value is then ‘deterministic’ as we

shall see.
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Buy the option today, hedge using the implied delta, and put

any cash in the bank earning r. The mark-to-market profit from

today to tomorrow is

dV i −∆i dS − r(V i −∆iS) dt−∆aDS dt

= Θi dt+ 1
2σ
2S2Γi dt− r(V i −∆iS) dt−∆aDS dt

= 1
2

(
σ2 − σ̃2

)
S2Γi dt. (1)

This is a far nicer way to make money.

• Observe how the profit is deterministic, there aren’t any dX

terms.
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From a risk management perspective this is much better be-

haved.

There is another advantage of hedging using implied volatility,

we don’t even need to know what actual volatility is.

• To make a profit all we need to know is that actual is always

going to be greater than implied (if we are buying) or always less

(if we are selling).

This takes some of the pressure off forecasting volatility accu-

rately in the first place.
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Add up the present value of all of these profits to get a total

profit of

1
2

(
σ2 − σ̃2

) ∫ T

t0
e−r(t−t0)S2Γi dt.

• This is always positive, but highly path dependent.
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Being path dependent it will depend on the drift µ.

If we start off at the money and the drift is very large (positive
or negative) we will find ourselves quickly moving into territory
where gamma and hence expression (1) is small, so that there
will be not much profit to be made.

The best that could happen would be for the stock to end up
close to the strike at expiration, this would maximize the total
profit.

This path dependency is shown in the next figure.

The figure shows several realizations of the same delta-hedged
position. Note that the lines are not perfectly smooth, again
because of the effect of hedging discretely. The option and
parameters are the same as in the previous example.
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P&L for a delta-hedged option on a mark-to-market basis, hedged using implied volatility.
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The simple analogy is now just putting money in the bank. The

P&L is always increasing in value but the end result is random.

Carr (2005) and Henrard (2001) show the more general result

that if you hedge using a delta based on a volatility σh then the

PV of the total profit is given by

V (S, t;σh)− V (S, t; σ̃) + 1
2

(
σ2 − σ2h

) ∫ T

t0
e−r(t−t0)S2Γh dt,

where the superscript on the gamma means that it uses the

Black–Scholes formula with a volatility of σh.
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The expected profit after hedging using implied volatility

When you hedge using delta based on implied volatility the profit

each ‘day’ is deterministic but the present value of total profit

by expiration is path dependent, and given by

1
2

(
σ2 − σ̃2

) ∫ T

t0
e−r(s−t0)S2Γi ds.
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Introduce

I = 1
2

(
σ2 − σ̃2

) ∫ t

t0
e−r(s−t0)S2Γi ds.

Since therefore

dI = 1
2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi dt

we can write down the following partial differential equation for
the real expected value, P(S, I, t), of I

∂P

∂t
+ 1
2σ
2S2

∂2P

∂S2
+ µS

∂P

∂S
+ 1
2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi

∂P

∂I
= 0,

with

P(S, I, T) = I.
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Look for a solution of this equation of the form

P(S, I, t) = I + F(S, t)

so that

∂F

∂t
+ 1
2σ
2S2

∂2F

∂S2
+ µS

∂F

∂S
+ 1
2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi = 0.

The source term can be simplified to

E
(
σ2 − σ̃2

)
e−r(T−t0)e−d22/2

2σ̃
√
2π(T − t)

,

where

d2 =
ln(S/E) + (r −D − 1

2σ̃
2)(T − t)

σ
√
T − t

.
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Change variables to

x= ln(S/E) +
2

σ2

(
µ− 1

2σ
2
)
τ and τ =

σ2

2
(T − t),

where E is the strike and T is expiration, and write

F(S, t) = w(x, τ).

The resulting partial differential equation is a then nicer.
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Result 1: After some manipulations we end up with the expected

profit initially (t = t0, S = S0, I = 0) being the single integral

F(S0, t0) =
Ee−r(T−t0)(σ2 − σ̃2)

2
√
2π

∫ T

t0

1√
σ2(s− t0) + σ̃2(T − s)

exp


−

(
ln(S0/E) +

(
µ− 1

2σ
2
)
(s− t0) +

(
r −D − 1

2σ̃
2
)
(T − s)

)2
2(σ2(s− t0) + σ̃2(T − s))


 ds.

Derivation: See Appendix.
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Results are shown in the following figures.

In the first figure is shown the expected profit versus the growth

rate µ. Parameters are S = 100, σ = 0.4, r = 0.05, D = 0,

E = 110, T = 1, σ̃ = 0.2.

• Observe that the expected profit has a maximum. This will
be at the growth rate that ensures, roughly speaking, that the

stock ends up close to at the money at expiration, where gamma

is largest.

In the figure is also shown the profit to be made when hedging

with actual volatility. For most realistic parameter regimes the

maximum expected profit hedging with implied is similar to the

guaranteed profit hedging with actual.
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In the next figure is shown expected profit versus E and µ. You

can see how the higher the growth rate the larger the strike price

at the maximum. The contour map is then shown.
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The effect of skew is shown next.

Here we have used a linear negative skew, from 22.5% at a

strike of 75, falling to 17.5% at the 125 strike. The at-the-

money implied volatility is 20% which in this case is the actual

volatility.

This picture changes when you divide the expected profit by the

price of the option (puts for lower strikes, call for higher). There

is then no maximum, profitability increases with distance away

from the money. Of course, this doesn’t take into account the

risk, the standard deviation associated with such trades.
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The variance of profit after hedging using implied volatility

Once we’ve calculated the expected profit from hedging using

implied volatility we can calculate the variance in the final profit.

Using the above notation, the variance will be the expected value

of I2 less the square of the average of I, already calculated.
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So we’ll need to calculate v(S, I, t) where

∂v

∂t
+ 1
2σ
2S2

∂2v

∂S2
+ µS

∂v

∂S
+ 1
2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi

∂v

∂I
= 0,

with

v(S, I, T) = I2.

The details of finding this function v are rather messy, but a

solution can be found of the form

v(S, I, t) = I2 + 2I H(S, t) +G(S, t).
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Result 2: The initial variance is G(S0, t0)− F(S0, t0)
2, where

G(S0, t0) =
E2(σ2 − σ̃2)2e−2r(T−t0)

4πσσ̃

∫ T

t0

∫ T

s

ep(u,s;S0,t0)

√
s− t0

√
T − s

√
σ2(u− s) + σ̃2(T − u)

√
1

σ2(s−t0)
+ 1

σ̃2(T−s)
+ 1

σ2(u−s)+σ̃2(T−u)

du ds

(2)
where

p(u, s;S0, t0) = −1
2

(x+ α(T − s))2

σ̃2(T − s)
− 1
2

(x+ α(T − u))2

σ2(u− s) + σ̃2(T − u)

+1
2

(
x+α(T−s)
σ̃2(T−s)

+ x+α(T−u)
σ2(u−s)+σ̃2(T−u)

)2
1

σ2(s−t0)
+ 1

σ̃2(T−s)
+ 1

σ2(u−s)+σ̃2(T−u)

and

x = ln(S0/E) +
(
µ− 1

2
σ2
)
(T − t0), and α= µ− 1

2
σ2 − r+D+ 1

2
σ̃2.

Derivation: See Appendix.
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In the next figure is shown the standard deviation of profit versus

growth rate, S = 100, σ = 0.4, r = 0.05, D = 0, E = 110, T = 1,

σ̃ = 0.2. And the following figure shows the standard deviation

of profit versus strike, S = 100, σ = 0.4, r = 0.05, D = 0,

µ = 0.1, T = 1, σ̃ = 0.2.
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Note that in these plots the expectations and standard deviations

have not been scaled with the cost of the options.

In the next figure is shown expected profit divided by cost versus

standard deviation divided by cost, as both strike and expiration

vary. In these S = 100, σ = 0.4, r = 0.05, D = 0, µ = 0.1,

σ̃ = 0.2.

• To some extent, although we emphasis only some, these di-

agrams can be interpreted in a classical mean-variance manner.

The main criticism is, of course, that we are not working with

normal distributions, and, furthermore, there is no downside, no

possibility of any losses.
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The next figure completes the earlier picture for the skew, since

it now contains the standard deviation.
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Hedging with different volatilities

We will briefly examine hedging using volatilities other than ac-

tual or implied.
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Actual volatility = Implied volatility

For the first example let’s look at hedging a long position in

a correctly priced option, so that σ = σ̃. We will hedge using

different volatilities, σh. Results are shown in the next figure.

The figure shows the expected profit and standard deviation of

profit when hedging with various volatilities. The chart also

shows minimum and maximum profit. Parameters are E = 100,

S = 100, µ = 0, σ = 0.2, r = 0.1, D = 0, T = 1, and σ̃ = 0.2.

With these parameters the expected profit is small as a fraction

of the market price of the option ($13.3) regardless of the hedg-

ing volatility. The standard deviation of profit is zero when the

option is hedged at the actual volatility. The upside, the maxi-

mum profit is much greater than the downside. Crucially all of

the curves have zero value at the actual/implied volatility.
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Actual volatility > Implied volatility

In the next figure is shown the expected profit and standard

deviation of profit when hedging with various volatilities when

actual volatility is greater than implied. The chart again also

shows minimum and maximum profit. Parameters are E = 100,

S = 100, µ = 0, σ = 0.4, r = 0.1, D = 0, T = 1, and σ̃ = 0.2.

Note that it is possible to lose money if you hedge at below

implied, but hedging with a higher volatility you will not be able

to lose until hedging with a volatility of approximately 75%. The

expected profit is again insensitive to hedging volatility.
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Actual volatility < Implied volatility

In the next figure is shown properties of the profit when hedging

with various volatilities when actual volatility is less than implied.

We are now selling the option and delta hedging it. Parameters

are E = 100, S = 100, µ = 0, σ = 0.4, r = 0.1, D = 0, T = 1,

and σ̃ = 0.2.

Now it is possible to lose money if you hedge at above implied,

but hedging with a lower volatility you will not be able to lose until

hedging with a volatility of approximately 10%. The expected

profit is again insensitive to hedging volatility. The downside is

now more dramatic than the upside.
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Pros and cons of hedging with each volatility

Given that we seem to have a choice in how to delta hedge it

is instructive to summarize the advantages and disadvantages of

the possibilities.
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Hedging with actual volatility

Pros:

• The main advantage of hedging with actual volatility is that
you know exactly what profit you will get at expiration.

Cons:

• The P&L fluctuations during the life of the option can be
daunting, and so less appealing from a ‘local’ as opposed to
‘global’ risk management perspective.

• You are unlikely to be totally confident in your volatility fore-
cast, the number you are putting into your delta formula.
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Hedging with implied volatility

Pros:

• There are no local fluctuations in P&L, you are continually
making a profit.

• You only need to be on the right side of the trade to profit.
Buy when actual is going to be higher than implied and sell
if lower.

• The number that goes into the delta is implied volatility, and
therefore easy to observe.

Cons:

• You don’t know how much money you will make, only that
it is positive.
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Hedging with another volatility

You can obviously balance the pros and cons of hedging with

actual and implied by hedging with another volatility altogether.

See Dupire (2005) for work in this area.
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In practice which volatility one uses is often determined by whether

one is constrained to mark to market or mark to model. If one is

able to mark to model then one is not necessarily concerned with

the day-to-day fluctuations in the mark-to-market profit and loss

and so it is natural to hedge using actual volatility.

However, it is common to have to report profit and loss based

on market values. This constraint may be imposed by a risk

management department, by prime brokers, or by investors who

may monitor the mark-to-market profit on a regular basis.

In this case it is more usual to hedge based on implied volatility

to avoid the daily fluctuations in the profit and loss.
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We can begin to quantify the ‘local’ risk, the daily fluctuations in

P&L, by looking at the random component in a portfolio hedged

using a volatility of σh.

The standard deviation of this risk is

σS |∆i −∆h |
√
dt. (3)

Note that this expression depends on all three volatilities.
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The next figure shows the two deltas (for a call option), one

using implied volatility and the other the hedging volatility, six

months before expiration.
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If the stock is far in or out of the money the two deltas are

similar and so the local risk is small.

The local risk is also small where the two deltas cross over. This

‘sweet spot’ is at

ln(S/E) + (r −D+ σ̃2/2)(T − t)

σ̃
√
T − t

=
ln(S/E) + (r −D+ σh

2
/2)(T − t)

σh
√
T − t

,

that is,

S = E exp
(
− T − t

σ̃ − σh

(
σ̃(r −D+ σh

2
/2)− σh(r −D+ σ̃2/2)

))
.
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The next figure shows a three-dimensional plot of expression (3),

without the
√
dt factor, as a function of stock price and time.

Following that is a contour map of the same. Parameters are

E = 100, S = 100, σ = 0.4, r = 0.1, D = 0, T = 1, σ̃ = 0.2,

σh = 0.3.
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For the remainder of this lecture we will only consider the case

of hedging using a delta based on implied volatility.
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Portfolios when hedging with implied volatility

A natural extension to the above analysis is to look at portfolios

of options, options with different strikes and expirations.

Since only an option’s gamma matters when we are hedging

using implied volatility, calls and puts are effectively the same

since they have the same gamma.

The profit from a portfolio is now

1
2

∑
k

qk
(
σ2 − σ̃2k

) ∫ Tk

t0
e−r(s−t0)S2Γik ds,

where k is the index for an option, and qk is the quantity of that

option.
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Introduce

I = 1
2

∑
k

qk
(
σ2 − σ̃2k

) ∫ t

t0
e−r(s−t0)S2Γik ds, (4)

as a new state variable, and the analysis can proceed as before.

Note that since there may be more than one expiration date

since we have several different options, it must be understood in

Equation (4) that Γik is zero for times beyond the expiration of

the option.
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The governing differential operator for expectation, variance,

etc. is then

∂

∂t
+ 1
2σ
2S2

∂2

∂S2
+ µS

∂

∂S
+ 1
2

∑
k

(
σ2 − σ̃2k

)
e−r(t−t0)S2Γik

∂

∂I
= 0,

with final condition representing expectation, variance, etc.
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Expectation

Result 3: The solution for the present value of the expected

profit (t = t0, S = S0, I = 0) is simply the sum of individual

profits for each option,

F(S0, t0) =
∑
k

qk
Eke

−r(Tk−t0)(σ2 − σ̃2k)

2
√
2π

∫ Tk

t0

1√
σ2(s− t0) + σ̃2k(Tk − s)

exp


−

(
ln(S0/Ek) +

(
µ− 1

2σ
2
)
(s− t0) +

(
r −D − 1

2σ̃
2
k

)
(Tk − s)

)2
2(σ2(s− t0) + σ̃2k(Tk − s))


 ds.

Derivation: See Appendix.
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Variance

Result 4: The variance is more complicated, obviously, because

of the correlation between all of the options in the portfolio.

Nevertheless, we can find an expression for the initial variance as

G(S0, t0)− F(S0, t0)
2 where

G(S0, t0) =
∑
j

∑
k

qjqkGjk(S0, t0)

where

Gjk(S0, t0) =
EjEk(σ2 − σ̃2j )(σ

2 − σ̃2k)e
−r(Tj−t0)−r(Tk−t0)

4πσσ̃k

∫ min(Tj,Tk)

t0

∫ Tj

s

ep(u,s;S0,t0)

√
s− t0

√
Tk − s

√
σ2(u− s) + σ̃2j (Tj − u)

√
1

σ2(s−t0)
+ 1

σ̃2k(Tk−s)
+ 1

σ2(u−s)+σ̃2j (Tj−u)

du ds

(5)
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where

p(u, s;S0, t0) = −1
2

(ln(S0/Ek) + µ̄(s− t0) + r̄k(Tk − s))2

σ̃2k(Tk − s)

−1
2

(ln(S0/Ej) + µ̄(u− t0) + r̄j(Tj − u))2

σ2(u− s) + σ̃2j (Tj − u)

+1
2

(
ln(S0/Ek)+µ̄(s−t0)+r̄k(Tk−s)

σ̃2k(Tk−s)
+ ln(S0/Ej)+µ̄(u−t0)+r̄j(Tj−u)

σ2(u−s)+σ̃2j (Tj−u)

)2
1

σ2(s−t0)
+ 1

σ̃2k(Tk−s)
+ 1

σ2(u−s)+σ̃2j (Tj−u)

and

µ̄ = µ− 1
2
σ2, r̄j = r −D − 1

2
σ̃2j and r̄k = r −D − 1

2
σ̃2k .

Derivation: See Appendix.
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Portfolio optimization possibilities

There is clearly plenty of scope for using the above formulas in

portfolio optimization problems. Here we give one example.

The stock is currently at 100. The growth rate is zero, actual

volatility is 20%, zero dividend yield and the interest rate is 5%.

The next table shows the available options, and associated pa-

rameters. Observe the negative skew.

The out-of-the-money puts are overvalued and the out-of-the-

money calls are undervalued. (The ‘Profit Total Expected’ row

assumes that we buy a single one of that option.)
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A B C D E
Type Put Put Call Call Call
Strike 80 90 100 110 120
Expiration 1 1 1 1 1
Volatility, Implied 0.250 0.225 0.200 0.175 0.150
Option Price, Market 1.511 3.012 10.451 5.054 1.660
Option Value, Theory 0.687 2.310 10.451 6.040 3.247
Profit Total Expected -0.933 -0.752 0.000 0.936 1.410

Available options.
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Using the above formulas we can find the portfolio that maxi-

mizes or minimizes target quantities (expected profit, standard

deviation, ratio of profit to standard deviation).

• Let us consider the simple case of maximizing the expected
return, while constraining the standard deviation to be one.

This is a very natural strategy when trying to make a profit

from volatility arbitrage while meeting constraints imposed by

regulators, brokers, investors etc.

The result is given in the next table.
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A B C D E
Type Put Put Call Call Call
Strike 80 90 100 110 120
Quantity -2.10 -2.25 0 1.46 1.28

An optimal portfolio.
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The payoff function (with its initial delta hedge) is shown in the

next figure.

• This optimization has effectively found an ideal risk reversal
trade.

This portfolio would cost -$0.46 to set up, i.e. it would bring in

premium. The expected profit is $6.83.
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Payoff function (with initial delta hedge)
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Because the state variable representing the profit, I, is not nor-

mally distributed a portfolio analysis based on mean and variance

is open to criticism.

So now we shall look at other ways of choosing or valuing a

portfolio.
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Other optimization strategies

Rather than choose an option or a portfolio based on mean and

variance it might be preferable to examine the probability density

function for I.

The main reason for this is the observation that I is not normally

distributed.
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Mathematically the problem for the cumulative distribution func-

tion for the final profit I ′ can be written as C(S0,0, t0; I
′) where

C(S, I, t; I ′) is the solution of

∂C

∂t
+ 1
2σ
2S2

∂2C

∂S2
+ µS

∂C

∂S
+ 1
2

∑
k

(
σ2 − σ̃2k

)
e−r(t−t0)S2Γik

∂C

∂I
= 0,

subject to the final condition

C(S, I, Tmax; I
′) = H(I′ − I),

where Tmax is the expiration of the longest maturity option and

H(·) is the Heaviside function.
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The same equation, with suitable final conditions, can be used

to choose or optimize a portfolio of options based on criteria

such as the following.

• Maximize probability of making a profit greater than a speci-
fied amount or, equivalently, minimize the probability of mak-

ing less than a specified amount

• Maximize profit at a certain probability threshold, such as
95% (a Value-at-Risk type of optimization, albeit one with

no possibility of a loss)

Constraints would typically need to be imposed on these opti-

mization problems, such as having a set budget and/or a limit

on number of positions that can be held.
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Exponential utility approach

Rather than relying on means and variances, which could be

criticized because we are not working with a Gaussian distribution

for I, or solving a differential equation in three dimensions, which

may be slow, there is another possibility, and one that has neither

of these disadvantages.

This is to work within a utility theory framework, in particular

using constant absolute risk aversion with utility function

−1
η
e−ηI.

The parameter η is then a person’s absolute risk aversion.
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The governing equation for the expected utility, U , is then

∂U

∂t
+ 1
2σ
2S2

∂2U

∂S2
+ µS

∂U

∂S
+ 1
2

∑
k

(
σ2 − σ̃2k

)
e−r(t−t0)S2Γik

∂U

∂I
= 0,

with final condition

U(S, I, Tmax) = −1
η
e−ηI.

where Tmax is the expiration of the longest maturity option.
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We can look for a solution of the form

U(S, I, t) = −1
η
e−ηIQ(S, t),

so that

∂Q

∂t
+ 1
2σ
2S2

∂2Q

∂S2
+ µS

∂Q

∂S
− ηQ

2

∑
k

(
σ2 − σ̃2k

)
e−r(t−t0)S2Γik = 0,

with final condition

Q(S, Tmax) = 1.

Being only a two-dimensional equation this will be very quick to
solve numerically. One can then pose and solve various optimal
portfolio problems. We shall not pursue this in this lecture.
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Conclusions and further work

This lecture has expanded on the work of Carr and Henrard in

terms of final formulas for the statistical properties of the profit

to be made hedging mispriced options. We have also indicated

how more sophisticated portfolio construction techniques can be

applied to this problem relatively straightforwardly. We have con-

centrated on the case of hedging using deltas based on implied

volatilities because this is the most common in practice, giving

mark-to-market profit the smoothest behavior. The analysis can

be readily extended to hedging using arbitrary σh with little extra

effort. This also opens up further optimization possibilities.
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Appendix: Derivation of results

Preliminary results

In the following derivations we often require the following simple results.

First, ∫ ∞

−∞
e−ax2dx=

√
π

a
. (6)

Second, the solution of

∂w

∂τ
=

∂2w

∂x2
+ f(x, τ)

that is initially zero and is zero at plus and minus infinity is

1

2
√
π

∫ ∞

−∞

∫ τ

0

f(x′, τ ′)√
τ − τ ′

e−(x−x′)2/4(τ−τ ′)dτ ′dx′. (7)

Finally, the transformations

x = ln(S/E) +
2

σ2

(
µ− 1

2
σ2
)
τ and τ =

σ2

2
(T − t),

turn the operator

∂

∂t
+ 1

2
σ2

∂2

∂S2
+ µS

∂

∂S
into

1
2
σ2

(
− ∂

∂τ
+

∂2

∂x2

)
. (8)
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Result 1: Expectation, single option

The equation to be solved for F (S, t) is

∂F

∂t
+ 1

2
σ2S2

∂2F

∂S2
+ µS

∂F

∂S
+ 1

2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi = 0,

with zero final and boundary conditions. Using the above changes of variables this becomes
F (S, t) = w(x, τ) where

∂w

∂τ
=

∂2w

∂x2
+

E
(
σ2 − σ̃2

)
e−r(T−t0)e−d2

2
/2

σσ̃
√
πτ

where

d2 =
σ

σ̃

x− 2
σ2
(µ− 1

2
σ2)τ + 2

σ2
(r −D − 1

2
σ̃2)τ√

2τ
.

The solution of this problem is, using (7),

1

2π

E
(
σ2 − σ̃2

)
e−r(T−t0)

σσ̃

∫ ∞

−∞

∫ τ

0

1√
τ ′

1√
τ − τ ′

exp

(
− (x− x′)2

4(τ − τ ′)
− σ2

4σ̃2τ ′

(
x′ − 2

σ2
(µ− 1

2
σ2)τ ′+

2

σ2
(r −D − 1

2
σ̃2)τ ′

)2)
dτ ′dx′.

We write the argument of the exponential function as

−a(x′+ b)2 + c.
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And so we have the solution

1

2π

E
(
σ2 − σ̃2

)
e−r(T−t0)

σσ̃

∫ τ

0

1√
τ ′

1√
τ − τ ′

∫ ∞

−∞
exp
(
−a(x′+ b)2 + c

)
dx′dτ ′

=
1

2
√
π

E
(
σ2 − σ̃2

)
e−r(T−t0)

σσ̃

∫ τ

0

1√
τ ′

1√
τ − τ ′

1√
a
exp (c) dτ ′.

It is easy to show that

a=
1

4(τ − τ ′)
+

σ2

4σ̃2τ ′
and c= − σ2

4σ̃2τ ′(τ − τ ′)

(
x− 2τ ′

σ2
(µ− 1

2
σ2 − r+D+ 1

2
σ̃2)
)2

1
τ−τ ′ +

σ2

σ̃2τ ′

.

With

s− t =
2

σ2
τ ′

we have

c = −
(
ln(S/E) +

(
µ− 1

2
σ2
)
(s− t) +

(
r −D − 1

2
σ̃2
)
(T − s)

)2
2(σ2(s− t) + σ̃2(T − s))

.

From this follows Result 1, that the expected profit initially (t = t0, S = S0, I = 0) is

Ee−r(T−t0)(σ2 − σ̃2)

2
√
2π

∫ T

t0

1√
σ2(s− t0) + σ̃2(T − s)

exp

(
−
(
ln(S0/E) +

(
µ− 1

2
σ2
)
(s− t0) +

(
r −D − 1

2
σ̃2
)
(T − s)

)2
2(σ2(s− t0) + σ̃2(T − s))

)
ds.
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Result 2: Variance, single option

The problem for the expectation of the square of the profit is

∂v

∂t
+ 1

2
σ2S2

∂2v

∂S2
+ µS

∂v

∂S
+ 1

2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi ∂v

∂I
= 0, (9)

with

v(S, I, T ) = I2.
A solution can be found of the form

v(S, I, t) = I2 + 2I H(S, t) +G(S, t).

Substituting this into Equation (9) leads to the following equations for H and G (both to
have zero final and boundary conditions):

∂H

∂t
+ 1

2
σ2S2

∂2H

∂S2
+ µS

∂H

∂S
+ 1

2

(
σ2 − σ̃2

)
e−r(t−t0)S2Γi = 0;

∂G

∂t
+ 1

2
σ2S2

∂2G

∂S2
+ µS

∂G

∂S
+
(
σ2 − σ̃2

)
e−r(t−t0)S2ΓiH = 0.

Comparing the equations for H and the earlier F we can see that

H = F =
Ee−r(T−t0)(σ2 − σ̃2)

2
√
2π

∫ T

t

1√
σ2(s− t) + σ̃2(T − s)

exp

(
−
(
ln(S/E) +

(
µ− 1

2
σ2
)
(s− t) +

(
r −D − 1

2
σ̃2
)
(T − s)

)2
2(σ2(s− t) + σ̃2(T − s))

)
ds.
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Notice in this that the expression is a present value at time t = t0, hence the e−r(T−t0) term
at the front. The rest of the terms in this must be kept as the running variables S and t.

Returning to variables x and τ , the governing equation for G(S, t) = w(x, τ) is

∂w

∂τ
=

∂2w

∂x2
+

2

σ2

Eσ
(
σ2 − σ̃2

)
e−r(T−t0)e−d2

2
/2

4σ̃
√
πτ

E
(
σ2 − σ̃2

)
e−r(T−t0)

2σσ̃
√
π

∫ τ

0

1√
τ ′

1√
τ − τ ′

1√
a
exp (c) dτ ′ (10)

where

d2 =
σ

σ̃

x− 2
σ2
(µ− 1

2
σ2 + r −D − 1

2
σ̃2)τ√

2τ
,

and a and c are as above.

The solution is therefore

1

2
√
π

2

σ2

Eσ
(
σ2 − σ̃2

)
e−r(T−t0)

4σ̃
√
π

E
(
σ2 − σ̃2

)
e−r(T−t0)

2σσ̃
√
π

∫ ∞

−∞

∫ τ

0

f(x′, τ ′)e−d2
2
/2

√
τ − τ ′

e−(x−x′)2/4(τ−τ ′)dτ ′dx′.

where now

f(x′, τ ′) =
1√
τ ′

∫ τ ′

0

1√
τ ′′

1√
τ ′ − τ ′′

1√
a
exp (c) dτ ′′

and in a and c all τs become τ ′s and all τ ′s become τ ′′s, and in d2 all τs become τ ′s and all

xs become x′s.
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The coefficient in front of the integral signs simplifies to

1

8π3/2

E2
(
σ2 − σ̃2

)2
e−2r(T−t0)

σ2σ̃2
.

The integral term is of the form ∫ ∞

−∞

∫ τ

0

∫ τ ′

0

· · · dτ ′′dτ ′dx′,

with the integrand being the product of an algebraic term

1√
τ ′
√
τ ′′

√
τ − τ ′

√
τ ′ − τ ′′

√
a

and an exponential term

exp

(
−1
2
d22 −

(x− x′)2

4(τ − τ ′)
+ c

)
.

This exponent is, in full,

− 1

4τ ′
σ2

σ̃2

(
x′ − 2

σ2
(µ− 1

2
σ2)τ ′+

2

σ2
(r −D − 1

2
σ̃2)τ ′

)2
− (x− x′)2

4(τ − τ ′)

− σ2

4σ̃2τ ′′(τ ′ − τ ′′)

(
x′ − 2τ ′′

σ2
(µ− 1

2
σ2 − r+D+ 1

2
σ̃2)
)2

1
τ ′−τ ′′ +

σ2

σ̃2τ ′′

.
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This can be written in the form

−d(x′+ f)2 + g,
where

d =
1

4

σ2

σ̃2
1

τ ′
+
1

4

1

τ − τ ′
+
1

4

σ2

σ2(τ ′ − τ ′′) + σ̃2τ ′′
and

g = − σ2

4σ̃2τ ′

(
x− 2ατ ′

σ2

)2
− σ2

4(σ2(τ ′ − τ ′′) + σ̃2τ ′′)

(
x− 2ατ ′′

σ2

)2

+
1

4

(
σ2

σ̃2τ ′

(
x− 2ατ ′

σ2

)
+ σ2

(σ2(τ ′−τ ′′)+σ̃2τ ′′)

(
x− 2ατ ′′

σ2

))2
σ2

σ̃2
1
τ ′ +

1
τ−τ ′ +

σ2

σ2(τ ′−τ ′′)+σ̃2τ ′′

,

α = µ− 1
2
σ2 − r+D+ 1

2
σ̃2.

Using Equation (6) we end up with

1

4π3/2

E2
(
σ2 − σ̃2

)2
e−2r(T−t0)

σ2σ̃2∫ τ

0

∫ τ ′

0

1√
τ ′
√
τ ′′

√
τ − τ ′

√
τ ′ − τ ′′

√
a

√
π

d
exp(g)dτ ′′dτ ′.

Changing variables to

τ =
σ2

2
(T − t), τ ′ =

σ2

2
(T − s), and τ ′′ =

σ2

2
(T − u),

and evaluating at S = S0, t = t0, gives the required Result 2.
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Result 3: Expectation, portfolio of options

This expression follows from the additivity of expectations.

Result 4: Variance, portfolio of options

The manipulations and calculations required for the analysis of the portfolio variance are
similar to that for a single contract. There is again a solution of the form

v(S, I, t) = I2 + 2I H(S, t) +G(S, t).

The main differences are that we have to carry around two implied volatilities, σ̃j and σ̃k and
two expirations, Tj and Tk. We will find that the solution for the variance is the sum of terms
satisfying diffusion equations with source terms like in Equation (10). The subscript ‘k’ is
then associated with the gamma term, and so appears outside the integral in the equivalent
of (10), and the subscript ‘j’ is associated with the integral and so appears in the integrand.

There is one additional subtlety in the derivations and that concerns the expirations. We
must consider the general case Tj 
= Tk. The integrations in (5) must only be taken over
the intervals up until the options have expired. The easiest way to apply this is to use the
convention that the gammas are zero after expiration. For this reason the s integral is over
t0 to min(Tj, Tk).

c©Paul Wilmott www.wilmott.com

104


